
Martin HÃjjek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5253633/publications.pdf Version: 2024-02-01

Μαρτιν Ηδιιέκ

#	Article	IF	CITATIONS
1	The influence of residue sodium ions in mixed oxide on catalytic activity in transesterification of vegetable oil. Molecular Catalysis, 2022, 517, 112017.	2.0	0
2	The Catalysed Transformation of Vegetable Oils or Animal Fats to Biofuels and Bio-Lubricants: A Review. Catalysts, 2021, 11, 1118.	3.5	43
3	Transition metals promoting Mg-Al mixed oxides for conversion of ethanol to butanol and other valuable products: Reaction pathways. Applied Catalysis A: General, 2021, 626, 118380.	4.3	9
4	The influence of vegetable oils composition on separation of transesterification products, especially quality of glycerol. Renewable Energy, 2021, 176, 262-268.	8.9	19
5	The influence of long-term exposure of Mg–Al mixed oxide at ambient conditions on its transition to hydrotalcite. Journal of Solid State Chemistry, 2021, 304, 122556.	2.9	4
6	Butanol as a co-solvent for transesterification of rapeseed oil by methanol under homogeneous and heterogeneous catalyst. Fuel, 2020, 277, 118239.	6.4	16
7	The description of catalyst behaviour during transesterification of rapeseed oil – Formation of micellar emulsion. Renewable Energy, 2020, 159, 938-943.	8.9	6
8	The use of cosolvents in heterogeneously and homogeneously catalysed methanolysis of oil. Journal of Environmental Management, 2020, 262, 110295.	7.8	8
9	Transesterification of <i>Camelina sativa</i> Oil Catalyzed by Mg/Al Mixed Oxides with Added Divalent Metals. ACS Omega, 2020, 5, 32040-32050.	3.5	7
10	The long-term catalytic performance of mixed oxides in fixed-bed reactors in transesterification. Renewable Energy, 2019, 143, 1259-1267.	8.9	10
11	Improved method of water removal from vegetable oil. Chemical Papers, 2019, 73, 767-769.	2.2	2
12	Statistical evaluation of the mutual relations of properties of Mg/Fe hydrotalcites and mixed oxides as transesterification catalysts. Applied Clay Science, 2018, 154, 28-35.	5.2	16
13	Butanolysis: Comparison of potassium hydroxide and potassium tert-butoxide as catalyst for biodiesel preparing from rapeseed oil. Journal of Environmental Management, 2018, 218, 555-561.	7.8	7
14	Acceleration and simplification of separation by addition of inorganic acid in biodiesel production. Journal of Cleaner Production, 2018, 192, 390-395.	9.3	15
15	Biodiesel: The study of methyl esters loss in the glycerol phase at various conditions. Journal of Cleaner Production, 2018, 197, 1573-1578.	9.3	10
16	Transesterification of rapeseed oil by butanol and separation of butyl ester. Journal of Cleaner Production, 2017, 155, 28-33.	9.3	29
17	The removal of free fatty acids from methyl ester. Renewable Energy, 2017, 103, 695-700.	8.9	9
18	Mg-Fe mixed oxides and their rehydrated mixed oxides as catalysts for transesterification. Journal of Cleaner Production, 2017, 161, 1423-1431.	9.3	20

Martin HÃijek

#	Article	IF	CITATIONS
19	Screening of active solid catalysts for esterification of tall oil fatty acids with methanol. Journal of Cleaner Production, 2017, 155, 34-38.	9.3	11
20	The factors influencing stability of Ca–Al mixed oxides as a possible catalyst for biodiesel production. Fuel Processing Technology, 2015, 134, 297-302.	7.2	23
21	Transesterification of rapeseed oil by Mg–Al mixed oxides with various Mg/Al molar ratio. Chemical Engineering Journal, 2015, 263, 160-167.	12.7	45
22	The Effect of Thermal Pre-Treatment on Structure, Composition, Basicity and Catalytic Activity of Mg/Al Mixed Oxides. Topics in Catalysis, 2013, 56, 586-593.	2.8	24
23	Ethanolysis of rapeseed oil by KOH as homogeneous and as heterogeneous catalyst supported on alumina and CaO. Energy, 2012, 48, 392-397.	8.8	36
24	Biodiesel: The influence of dealcoholization on reaction mixture composition after neutralization of catalyst by carbon dioxide. Fuel, 2012, 96, 85-89.	6.4	14
25	Effect of phase separation temperature on ester yields from ethanolysis of rapeseed oil in the presence of NaOH and KOH as catalysts. Bioresource Technology, 2012, 110, 288-291.	9.6	18
26	Ethanolysis of rapeseed oil – Distribution of ethyl esters, glycerides and glycerol between ester and glycerol phases. Bioresource Technology, 2010, 101, 2071-2075.	9.6	41
27	Combined effect of water and KOH on rapeseed oil methanolysis. Bioresource Technology, 2010, 101, 3121-3125.	9.6	18
28	Study of effects of some reaction conditions on ethanolysis of rapeseed oil with dispergation. Bioresource Technology, 2010, 101, 1213-1219.	9.6	22
29	Treatment of glycerol phase formed by biodiesel production. Bioresource Technology, 2010, 101, 3242-3245.	9.6	153
30	Relationships among flash point, carbon residue, viscosity and some impurities in biodiesel after ethanolysis of rapeseed oil. Bioresource Technology, 2010, 101, 7397-7401.	9.6	28
31	Determination of esters in glycerol phase after transesterification of vegetable oil. Talanta, 2010, 82, 283-285.	5.5	14
32	Relationship of variables affecting separation following transesterification of vegetable oil. European Journal of Lipid Science and Technology, 2009, 111, 499-504.	1.5	2
33	Separation of reaction mixture after ethanolysis of rapeseed oil. European Journal of Lipid Science and Technology, 2009, 111, 663-668.	1.5	17
34	Biodiesel preparation in a batch emulsification reactor. European Journal of Lipid Science and Technology, 2009, 111, 979-984.	1.5	6
35	The effect of the acidity of rapeseed oil on its transesterification. Bioresource Technology, 2009, 100, 5555-5559.	9.6	51
36	Simplification of separation of the reaction mixture after transesterification of vegetable oil. European Journal of Lipid Science and Technology, 2008, 110, 347-350.	1.5	17

#	Article	IF	CITATIONS
37	Factors affecting the separation of the reaction mixture after transesterification of rapeseed oil. European Journal of Lipid Science and Technology, 2008, 110, 920-925.	1.5	3
38	Determination of free glycerol in biodiesel. European Journal of Lipid Science and Technology, 2006, 108, 666-669.	1.5	36