Un Jung Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5253396/publications.pdf

Version: 2024-02-01

26630 33894 10,755 136 56 99 citations h-index g-index papers 144 144 144 11302 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	<scp>mTOR</scp> Inhibition with Sirolimus in Multiple System Atrophy: A Randomized, Doubleâ€Blind, Placeboâ€Controlled Futility Trial and 1â€Year Biomarker Longitudinal Analysis. Movement Disorders, 2022, 37, 778-789.	3.9	16
2	Discussion of Research Priorities for Gait Disorders in Parkinson's Disease. Movement Disorders, 2022, 37, 253-263.	3.9	16
3	Reply to: "Letter on DiscussionÂof Gait Research― Movement Disorders, 2022, 37, 1328-1328.	3.9	O
4	Mitophagy deficiency increases NLRP3 to induce brown fat dysfunction in mice. Autophagy, 2021, 17, 1205-1221.	9.1	53
5	COVID-19 Vaccination for Persons with Parkinson's Disease: Light at the End of the Tunnel?. Journal of Parkinson's Disease, 2021, 11, 3-8.	2.8	21
6	α-Synuclein in blood exosomes immunoprecipitated using neuronal and oligodendroglial markers distinguishes Parkinson's disease from multiple system atrophy. Acta Neuropathologica, 2021, 142, 495-511.	7.7	80
7	Seed Amplification Assay to Diagnose Early Parkinson's and Predict Dopaminergic Deficit Progression. Movement Disorders, 2021, 36, 2444-2446.	3.9	24
8	A rapid αâ€synuclein seed assay of Parkinson's disease CSF panel shows high diagnostic accuracy. Annals of Clinical and Translational Neurology, 2021, 8, 374-384.	3.7	40
9	High diagnostic performance of independent alpha-synuclein seed amplification assays for detection of early Parkinson's disease. Acta Neuropathologica Communications, 2021, 9, 179.	5.2	86
10	Elevated In Vitro Kinase Activity in Peripheral Blood Mononuclear Cells of <scp>Leucineâ€Rich</scp> Repeat Kinase 2 <scp>G2019S</scp> Carriers: A Novel <scp>Enzymeâ€Linked</scp> Immunosorbent Assay–Based Method. Movement Disorders, 2020, 35, 2095-2100.	3.9	24
11	Exercise Reverses Dysregulation of T-Cell-Related Function in Blood Leukocytes of Patients With Parkinson's Disease. Frontiers in Neurology, 2020, 10, 1389.	2.4	6
12	Impact of the <scp>COVID</scp> â€19 Pandemic on Parkinson's Disease and Movement Disorders. Movement Disorders Clinical Practice, 2020, 7, 357-360.	1.5	37
13	Impact of the <scp>COVID</scp> â€19 Pandemic on Parkinson's Disease and Movement Disorders. Movement Disorders, 2020, 35, 711-715.	3.9	134
14	Reversibility of Tardive Dyskinesia Syndrome. Tremor and Other Hyperkinetic Movements, 2020, 4, 282.	2.0	7
15	Alterations in the intrinsic properties of striatal cholinergic interneurons after dopamine lesion and chronic L-DOPA. ELife, 2020, 9, .	6.0	32
16	Motor phenotype classification in moderate to advanced PD in BioFIND study. Parkinsonism and Related Disorders, 2019, 65, 178-183.	2.2	20
17	Effects of repeated waist-pull perturbations on gait stability in subjects with cerebellar ataxia. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 50.	4.6	10
18	Comparative study of cerebrospinal fluid αâ€synuclein seeding aggregation assays for diagnosis of Parkinson's disease. Movement Disorders, 2019, 34, 536-544.	3.9	146

#	Article	IF	Citations
19	<i>SMPD1</i> mutations, activity, and αâ€synuclein accumulation in Parkinson's disease. Movement Disorders, 2019, 34, 526-535.	3.9	81
20	Neuromelanin-sensitive MRI as a noninvasive proxy measure of dopamine function in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 5108-5117.	7.1	136
21	Mitochondrial dysfunction and mitophagy defect triggered by heterozygous <i>GBA</i> mutations. Autophagy, 2019, 15, 113-130.	9.1	155
22	CSF \hat{l}^2 -amyloid ₄₂ and risk of freezing of gait in early Parkinson disease. Neurology, 2019, 92, e40-e47.	1.1	45
23	Neuromelanin detection by magnetic resonance imaging (MRI) and its promise as a biomarker for Parkinson's disease. Npj Parkinson's Disease, 2018, 4, 11.	5.3	169
24	Long-term effect of low frequency stimulation of STN on dysphagia, freezing of gait and other motor symptoms in PD. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 989-994.	1.9	56
25	Alpha galactosidase A activity in Parkinson's disease. Neurobiology of Disease, 2018, 112, 85-90.	4.4	56
26	Presynaptic striatal dopaminergic depletion predicts the later development of freezing of gait in de novo Parkinson's disease: An analysis of the PPMI cohort. Parkinsonism and Related Disorders, 2018, 51, 49-54.	2.2	61
27	Recommendations of the Global Multiple System Atrophy Research Roadmap Meeting. Neurology, 2018, 90, 74-82.	1.1	23
28	Posters presentation selected for the blue ribbon session at the annual meeting of the Parkinson's disease and movement disorders society (Hong Kong, October, 2018) Movement Disorders, 2018, 33, 1977-1991.	3.9	0
29	Hoehn and Yahr stage 3 and postural stability item in the movement disorder society–unified Parkinson's disease rating scale. Movement Disorders, 2018, 33, 1188-1189.	3.9	3
30	Association of Low Lysosomal Enzymes Activity With Brain Arterial Dilatation. Stroke, 2018, 49, 1977-1980.	2.0	2
31	Reply To: <scp>D</scp> etection of <scp>A</scp> lphaâ€ <scp>S</scp> ynuclein in <scp>S</scp> aliva: <scp>T</scp> he <scp>I</scp> mportance of <scp>P</scp> reanalytical <scp>A</scp> ssessment. Movement Disorders, 2018, 33, 1031-1031.	3.9	1
32	Cerebrospinal fluid, plasma, and saliva in the BioFIND study: Relationships among biomarkers and Parkinson's disease Features. Movement Disorders, 2018, 33, 282-288.	3.9	122
33	Dopamine neuron glutamate cotransmission evokes a delayed excitation in lateral dorsal striatal cholinergic interneurons. ELife, 2018, 7, .	6.0	49
34	Evoked transients of pH-sensitive fluorescent false neurotransmitter reveal dopamine hot spots in the globus pallidus. ELife, 2018, 7 , .	6.0	12
35	Frequency of <i>GBA</i> Variants in Autopsyâ€proven Multiple System Atrophy. Movement Disorders Clinical Practice, 2017, 4, 574-581.	1.5	47
36	<scp>C</scp> omments on the recent viewpoint article on lowâ€frequency deep brain stimulation for <scp>P</scp> arkinson's disease. Movement Disorders, 2017, 32, 176-176.	3.9	5

#	Article	IF	CITATIONS
37	Adaptation of Stability during Perturbed Walking in Parkinson's Disease. Scientific Reports, 2017, 7, 17875.	3.3	33
38	Elevated GM3 plasma concentration in idiopathic Parkinson's disease: A lipidomic analysis. PLoS ONE, 2017, 12, e0172348.	2.5	69
39	Decreased Coenzyme Q10 Levels in Multiple System Atrophy Cerebellum. Journal of Neuropathology and Experimental Neurology, 2016, 75, 663-672.	1.7	57
40	The BioFIND study: Characteristics of a clinically typical Parkinson's disease biomarker cohort. Movement Disorders, 2016, 31, 924-932.	3.9	48
41	SCARB2 variants and glucocerebrosidase activity in Parkinson's disease. Npj Parkinson's Disease, 2016, 2, .	5.3	36
42	Comparison of clinical features in pathologically confirmed PSP and MSA patients followed at a tertiary center. Npj Parkinson's Disease, 2015, 1, 15007.	5.3	26
43	Clinical and scientific perspectives on movement disorders: Stanley Fahn's contributions. Movement Disorders, 2015, 30, 1862-1869.	3.9	5
44	Balancing the basal ganglia circuitry: A possible new role for dopamine D2 receptors in health and disease. Movement Disorders, 2015, 30, 895-903.	3.9	43
45	Enhanced histamine H2 excitation of striatal cholinergic interneurons in l-DOPA-induced dyskinesia. Neurobiology of Disease, 2015, 76, 67-76.	4.4	37
46	Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD. Neurology, 2015, 84, 415-420.	1.1	132
47	Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson's disease. Progress in Neurobiology, 2015, 132, 96-168.	5.7	379
48	Phosphorylated α-synuclein in Parkinson's disease: correlation depends on disease severity. Acta Neuropathologica Communications, 2015, 3, 7.	5.2	74
49	Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD. Neurology, 2015, 85, 557-557.	1.1	7
50	Striatal cholinergic interneuron regulation and circuit effects. Frontiers in Synaptic Neuroscience, 2014, 6, 22.	2.5	173
51	DBS reduced hemichorea associated with a developmental venous anomaly and microbleeding in STN. Neurology, 2014, 82, 636-637.	1.1	9
52	Striatal Cholinergic Cell Ablation Attenuates l-DOPA Induced Dyskinesia in Parkinsonian Mice. Journal of Neuroscience, 2014, 34, 3090-3094.	3.6	68
53	A Randomized Clinical Trial of High-Dosage Coenzyme Q10 in Early Parkinson Disease. JAMA Neurology, 2014, 71, 543.	9.0	312
54	Loss of PINK1 Attenuates HIF-1α Induction by Preventing 4E-BP1-Dependent Switch in Protein Translation under Hypoxia. Journal of Neuroscience, 2014, 34, 3079-3089.	3.6	37

#	Article	lF	Citations
55	Parkinson's Disease Biomarkers: Resources for Discovery and Validation. Neuropsychopharmacology, 2014, 39, 241-242.	5.4	8
56	Reversibility of tardive dyskinesia syndrome. Tremor and Other Hyperkinetic Movements, 2014, 4, 282.	2.0	3
57	Longitudinal assessment of tau and amyloid beta in cerebrospinal fluid of Parkinson disease. Acta Neuropathologica, 2013, 126, 671-682.	7.7	76
58	The role of neuroplasticity in dopaminergic therapy for Parkinson disease. Nature Reviews Neurology, 2013, 9, 248-256.	10.1	67
59	Pink1 deficiency attenuates astrocyte proliferation through mitochondrial dysfunction, reduced akt and increased p38 mapk activation, and downregulation of egfr. Glia, 2013, 61, 800-812.	4.9	81
60	Activity enhances dopaminergic long-duration response in Parkinson disease. Neurology, 2012, 78, 1146-1149.	1.1	26
61	Effect of stimulation frequency on immediate freezing of gait in newly activated STN DBS in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 1015-1017.	1.9	81
62	Role of DaTSCAN and clinical diagnosis in Parkinson disease. Neurology, 2012, 79, 1744-1744.	1.1	7
63	Plasma-Based Circulating MicroRNA Biomarkers for Parkinson's Disease. Journal of Parkinson's Disease, 2012, 2, 321-331.	2.8	161
64	Diagnostic biomarkers of Parkinson's disease: what gain at what cost?. Journal of Neurology, Neurosurgery and Psychiatry, 2012, 83, 769-769.	1.9	3
65	The antioxidant Trolox helps recovery from the familial Parkinson's disease-specific mitochondrial deficits caused by PINK1- and DJ-1-deficiency in dopaminergic neuronal cells. Mitochondrion, 2011, 11, 707-715.	3.4	47
66	Transcription factor AP- $2\hat{l}^2$ regulates the neurotransmitter phenotype and maturation of chromaffin cells. Molecular and Cellular Neurosciences, 2011, 46, 245-251.	2.2	15
67	Cerebrospinal fluid biomarkers for Parkinson disease diagnosis and progression. Annals of Neurology, 2011, 69, 570-580.	5.3	371
68	Enhanced striatal cholinergic neuronal activity mediates <scp>l</scp> -DOPAâ€"induced dyskinesia in parkinsonian mice. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 840-845.	7.1	166
69	Dopamineâ€dependent motor learning: Insight into levodopa's longâ€duration response. Annals of Neurology, 2010, 67, 639-647.	5.3	85
70	Structural determinants of PINK1 topology and dual subcellular distribution. BMC Cell Biology, 2010, 11, 90.	3.0	29
71	DJ-1 and α-synuclein in human cerebrospinal fluid as biomarkers of Parkinson's disease. Brain, 2010, 133, 713-726.	7.6	575
72	Biomarkers in neuropsychiatric diseases. Neurobiology of Disease, 2009, 35, 115-116.	4.4	0

#	Article	IF	Citations
73	Consideration of gene therapy for paediatric neurotransmitter diseases. Journal of Inherited Metabolic Disease, 2009, 32, 387-394.	3.6	3
74	Characterization of PINK1 processing, stability, and subcellular localization. Journal of Neurochemistry, 2008, 106, 464-474.	3.9	216
75	Regulation of the Noradrenaline Neurotransmitter Phenotype by the Transcription Factor AP-2β. Journal of Biological Chemistry, 2008, 283, 16860-16867.	3.4	35
76	Unregulated Cytosolic Dopamine Causes Neurodegeneration Associated with Oxidative Stress in Mice. Journal of Neuroscience, 2008, 28, 425-433.	3.6	211
77	A prospective blinded evaluation of deep brain stimulation for the treatment of secondary dystonia and primary torticollis syndromes. Journal of Neurosurgery, 2008, 109, 405-409.	1.6	90
78	Effects of Low to Moderate Acute Doses of Pramipexole on Impulsivity and Cognition in Healthy Volunteers. Journal of Clinical Psychopharmacology, 2008, 28, 45-51.	1.4	85
79	Neuroprotective effect of the surfactant poloxamer 188 in a model of intracranial hemorrhage in rats. Journal of Neurosurgery: Pediatrics, 2007, 106, 36-40.	1.3	21
80	Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice. Human Molecular Genetics, 2007, 16, 2900-2910.	2.9	89
81	Expansion of the first PolyA tract of <i>ARX</i> causes infantile spasms and status dystonicus. Neurology, 2007, 69, 427-433.	1.1	143
82	Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. Journal of Neurochemistry, 2007, 104, 071018045431005-???.	3.9	68
83	MPTP administration in mice changes the ratio of splice isoforms of fosB and rgs9. Brain Research, 2007, 1182, 1-10.	2.2	18
84	Chronic 3,4-dihydroxyphenylalanine treatment induces dyskinesia in aphakia mice, a novel genetic model of Parkinson's disease. Neurobiology of Disease, 2007, 27, 11-23.	4.4	59
85	Genetic selection of sox1GFPâ€expressing neural precursors removes residual tumorigenic pluripotent stem cells and attenuates tumor formation after transplantation. Journal of Neurochemistry, 2006, 97, 1467-1480.	3.9	137
86	Stromal Cell-Derived Inducing Activity, Nurr1, and Signaling Molecules Synergistically Induce Dopaminergic Neurons from Mouse Embryonic Stem Cells. Stem Cells, 2006, 24, 557-567.	3.2	97
87	Neural Precursors Derived from Embryonic Stem Cells, but Not Those from Fetal Ventral Mesencephalon, Maintain the Potential to Differentiate into Dopaminergic Neurons After Expansion In Vitro. Stem Cells, 2006, 24, 1583-1593.	3.2	70
88	Behavioral models of Parkinson's disease in rodents: A new look at an old problem. Movement Disorders, 2006, 21, 1595-1606.	3.9	200
89	Identification and Treatment of Cervical and Oromandibular Dystonia in Acutely Brain-Injured Patients. Neurocritical Care, 2005, 3, 139-145.	2.4	20
90	Age-dependent Motor Deficits and Dopaminergic Dysfunction in DJ-1 Null Mice. Journal of Biological Chemistry, 2005, 280, 21418-21426.	3.4	221

#	Article	IF	CITATIONS
91	Neuroprotective Therapy in Parkinson's Disease: Current Status and New Directions from		

#	Article	IF	Citations
109	The Localization and Functional Contribution of Striatal Aromatic L-Amino Acid Decarboxylase to L-3,4-Dihydroxyphenylalanine Decarboxylation in Rodent Parkinsonian Models. Cell Transplantation, 2000, 9, 567-576.	2.5	20
110	Preferential resistance of dopaminergic neurons to glutathione depletion in a reconstituted nigrostriatal system. Brain Research, 2000, 873, 203-211.	2.2	14
111	Vesicular Monoamine Transporter-2 and Aromaticl-Amino Acid Decarboxylase Enhance Dopamine Delivery afterl-3,4-Dihydroxyphenylalanine Administration in Parkinsonian Rats. Journal of Neuroscience, 1999, 19, 3266-3274.	3.6	46
112	Gene therapy for Parkinson's disease: review and update. Expert Opinion on Investigational Drugs, 1999, 8, 1551-1564.	4.1	1
113	Biochemical and anatomical characterization of forepaw adjusting steps in rat models of Parkinson's disease: studies on medial forebrain bundle and striatal lesions. Neuroscience, 1999, 88, 617-628.	2.3	220
114	In VivoL-DOPA Production by Genetically Modified Primary Rat Fibroblast or 9L Gliosarcoma Cell Grafts via Coexpression of GTPcyclohydrolase I with Tyrosine Hydroxylase. Experimental Neurology, 1998, 151, 249-264.	4.1	53
115	The Role of Glutathione in Dopaminergic Neuronal Survival. Journal of Neurochemistry, 1997, 69, 1850-1858.	3.9	80
116	Role of Aromatic <scp>l</scp> â€Amino Acid Decarboxylase for Dopamine Replacement by Genetically Modified Fibroblasts in a Rat Model of Parkinson's Disease. Journal of Neurochemistry, 1997, 69, 2055-2063.	3.9	49
117	Double Transduction with GTP Cyclohydrolase I and Tyrosine Hydroxylase Is Necessary for Spontaneous Synthesis ofl-DOPA by Primary Fibroblasts. Journal of Neuroscience, 1996, 16, 4449-4456.	3.6	112
118	Spread of symptoms in idiopathic torsion dystonia. Movement Disorders, 1995, 10, 143-152.	3.9	161
119	Brain-derived neurotrophic factor-transduced fibroblasts: Production of BDNF and effects of grafting to the adult rat brain. Journal of Comparative Neurology, 1995, 354, 361-376.	1.6	71
120	Genetic Modification of Cells with Retrovirus Vectors for Grafting into the Central Nervous System. , 1995, , 211-237.		7
121	Intrastriatal implantation of fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevents degeneration of dopaminergic neurons in a rat model of Parkinson's disease. Journal of Neuroscience, 1995, 15, 7810-7820.	3.6	252
122	Structure of the Rat Aromatic L-Amino Acid Decarboxylase Gene: Evidence for an Alternative Promoter Usage. Journal of Neurochemistry, 1993, 60, 1058-1064.	3.9	38
123	Regulation of dopamine production by genetically modified primary fibroblasts. Journal of Neuroscience, 1993, 13, 5203-5211.	3.6	84
124	DOPA-decarboxylation in the striata of rats with unilateral substantia nigra lesions. Neuroscience Letters, 1992, 147, 53-57.	2.1	32
125	Intracerebral grafting in the dopaminergic system: issues and controversy. Current Opinion in Neurobiology, 1991, 1, 414-419.	4.2	3
126	Distant effects of locally injected botulinum toxin: A double-blind study of single fiber EMG changes. Muscle and Nerve, 1991, 14, 672-675.	2.2	167

#	Article	IF	CITATIONS
127	Cellular replacement therapy for neurologic disorders: potential of genetically engineered cells. Journal of Cellular Biochemistry, 1991, 45, 252-257.	2.6	40
128	Letters to the editor. Movement Disorders, 1990, 5, 178-183.	3.9	16
129	Letters to the editor. Movement Disorders, 1990, 5, 352-355.	3.9	48
130	Deduced amino acid sequence of bovine aromatic l-amino acid decarboxylase: homology to other decarboxylases. Molecular Brain Research, 1990, 8, 83-87.	2.3	48
131	Dopamine betaâ€hydroxylase activity in cerebrospinal fluid of idiopathic torsion dystonia. Neurology, 1990, 40, 1626-1626.	1.1	3
132	Tardive akathisia: An analysis of clinical features and response to open therapeutic trials. Movement Disorders, 1989, 4, 157-175.	3.9	139
133	Case 1, 1989: Juvenile-onset parkinsonism, dystonia, and pyramidal tract signs. Movement Disorders, 1989, 4, 363-370.	3.9	5
134	Natural history and treatment of tardive dystonia. Movement Disorders, 1986, 1, 193-208.	3.9	268
135	A case of parkinsonism following striatal lacunar infarction Journal of Neurology, Neurosurgery and Psychiatry, 1986, 49, 1087-1088.	1.9	41
136	Trophic factor delivery by gene therapy., 0,, 532-547.		0