List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5253312/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Strengthening FCC-CoCrFeMnNi high entropy alloys by Mo addition. Journal of Materials Science and<br>Technology, 2019, 35, 578-583.                                                                                                                   | 5.6 | 126       |
| 2  | Microstructure evolution, Cu segregation and tensile properties of CoCrFeNiCu high entropy alloy during directional solidification. Journal of Materials Science and Technology, 2020, 38, 19-27.                                                     | 5.6 | 85        |
| 3  | Annealed microstructure dependent corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy. Journal of<br>Materials Science and Technology, 2021, 62, 234-248.                                                                                                  | 5.6 | 68        |
| 4  | Formation of titanium hydride in Ti–6Al–4V alloy. Journal of Alloys and Compounds, 2006, 425, 140-144.                                                                                                                                                | 2.8 | 63        |
| 5  | Deformation behavior and microstructural evolution of directionally solidified TiAlNb-based alloy during thermo-compression at 1373–1573K. Materials and Design, 2015, 84, 118-132.                                                                   | 3.3 | 57        |
| 6  | Microstructure selection during the directionally peritectic solidification of Ti–Al binary system.<br>Intermetallics, 2005, 13, 267-274.                                                                                                             | 1.8 | 56        |
| 7  | Deoxidation of Titanium alloy using hydrogen. International Journal of Hydrogen Energy, 2009, 34,<br>8958-8963.                                                                                                                                       | 3.8 | 53        |
| 8  | Investigation of macro/microstructure evolution and mechanical properties of directionally solidified high-Nb TiAl-based alloy. Materials and Design, 2016, 89, 492-506.                                                                              | 3.3 | 53        |
| 9  | The microstructure parameters and microhardness of directionally solidified Ti–43Al–3Si alloy.<br>Journal of Alloys and Compounds, 2010, 506, 593-599.                                                                                                | 2.8 | 50        |
| 10 | Dependency of microhardness on solidification processing parameters and microstructure<br>characteristics in the directionally solidified Ti–46Al–0.5W–0.5Si alloy. Journal of Alloys and<br>Compounds, 2010, 504, 60-64.                             | 2.8 | 49        |
| 11 | An as-cast high-entropy alloy with remarkable mechanical properties strengthened by nanometer precipitates. Nanoscale, 2020, 12, 3965-3976.                                                                                                           | 2.8 | 49        |
| 12 | Microstructure and mechanical properties of CoCrFeNiW high entropy alloys reinforced by μ phase particles. Journal of Alloys and Compounds, 2020, 843, 155997.                                                                                        | 2.8 | 49        |
| 13 | The corrosion behavior of Ti-6Al-3Nb-2Zr-1Mo alloy: Effects of HCl concentration and temperature.<br>Journal of Materials Science and Technology, 2021, 74, 143-154.                                                                                  | 5.6 | 43        |
| 14 | Enhanced plasticity in Zr-based bulk metallic glasses by hydrogen. International Journal of Hydrogen<br>Energy, 2012, 37, 14697-14701.                                                                                                                | 3.8 | 42        |
| 15 | Secondary dendrite arm migration caused by temperature gradient zone melting during peritectic<br>solidification. Acta Materialia, 2012, 60, 2679-2688.                                                                                               | 3.8 | 41        |
| 16 | Microstructure control and mechanical properties of Ti44Al6Nb1.0Cr2.0V alloy by cold crucible<br>directional solidification. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2014, 614, 67-74. | 2.6 | 40        |
| 17 | Effect of growth rate on microstructure parameters and microhardness in directionally solidified<br>Ti–49Al alloy. Materials & Design, 2012, 34, 552-558.                                                                                             | 5.1 | 39        |
| 18 | Microstructure, Mechanical Properties, and Crack Propagation Behavior in High-Nb TiAl Alloys by<br>Directional Solidification. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2018, 49, 4555-4564.         | 1.1 | 39        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Brittle–ductile transition during creep in nearly and fully lamellar high-Nb TiAl alloys. Intermetallics,<br>2018, 93, 47-54.                                                                                               | 1.8 | 38        |
| 20 | Effect of hydrogen on hot deformation behaviors of TiAl alloys. International Journal of Hydrogen<br>Energy, 2010, 35, 13322-13328.                                                                                         | 3.8 | 35        |
| 21 | Microstructure, microsegregation pattern and the formation of B2 phase in directionally solidified<br>Ti–46Al–8Nb alloy. Journal of Alloys and Compounds, 2012, 541, 275-282.                                               | 2.8 | 34        |
| 22 | Microstructure evolution and mechanical properties of directionally-solidified TiAlNb alloy in different temperature gradients. Journal of Alloys and Compounds, 2015, 648, 667-675.                                        | 2.8 | 33        |
| 23 | High temperature deformation behavior of melt hydrogenated (TiB + TiC)/Ti-6Al-4V composites.<br>Materials and Design, 2017, 121, 335-344.                                                                                   | 3.3 | 33        |
| 24 | Effects of V and B, Y additions on the microstructure and creep behaviour of high-Nb TiAl alloys.<br>Journal of Alloys and Compounds, 2018, 747, 640-647.                                                                   | 2.8 | 33        |
| 25 | Hot deformation behavior and dynamic recrystallization of melt hydrogenated Ti-6Al-4V alloy. Journal of Alloys and Compounds, 2017, 728, 709-718.                                                                           | 2.8 | 32        |
| 26 | Effect of zirconium content on the microstructure and corrosion behavior of as-cast Ti-Al-Nb-Zr-Mo<br>alloy. Journal of Materials Research and Technology, 2021, 15, 4896-4913.                                             | 2.6 | 31        |
| 27 | Investigation of melt hydrogenation on the microstructure and deformation behavior of Ti–6Al–4V<br>alloy. International Journal of Hydrogen Energy, 2011, 36, 1027-1036.                                                    | 3.8 | 29        |
| 28 | Experimental and numerical investigation on mass transfer induced by electromagnetic field in cold<br>crucible used for directional solidification. International Journal of Heat and Mass Transfer, 2017,<br>114, 297-306. | 2.5 | 29        |
| 29 | Deformation behavior and microstructural evolution of hydrogenated Ti44Al6Nb alloy during thermo-compression at 1373–1523 K. Materials and Design, 2016, 108, 259-268.                                                      | 3.3 | 28        |
| 30 | Dependency of microstructure parameters and microhardness on the temperature gradient for directionally solidified Ti–49Al alloy. Materials Chemistry and Physics, 2011, 130, 1232-1238.                                    | 2.0 | 27        |
| 31 | Effect of power on microstructure and mechanical properties of Ti44Al6Nb1.0Cr2.0V0.15Y0.1B alloy prepared by cold crucible directional solidification. Materials & Design, 2015, 67, 390-397.                               | 5.1 | 27        |
| 32 | Microstructure evolution and mechanical properties of TiAl binary alloys added with SiC fibers.<br>Intermetallics, 2018, 98, 69-78.                                                                                         | 1.8 | 26        |
| 33 | Influence of thermal stabilization on the solute concentration of the melt in directional solidification. Journal of Crystal Growth, 2010, 312, 3658-3664.                                                                  | 0.7 | 25        |
| 34 | Lamellar orientation and growth direction of $\hat{I}\pm$ phase in directionally solidified Ti-46Al-0.5W-0.5Si alloy. Intermetallics, 2012, 27, 38-45.                                                                      | 1.8 | 25        |
| 35 | Microstructure modification and mechanical performances enhancement of Ti44Al6Nb1Cr alloy by ultrasound treatment. Journal of Alloys and Compounds, 2017, 710, 409-417.                                                     | 2.8 | 25        |
| 36 | Hydrogen solubility in molten TiAl alloys. International Journal of Hydrogen Energy, 2010, 35, 8008-8013.                                                                                                                   | 3.8 | 23        |

YAN-QING SU

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Removal of metal impurities in metallurgical grade silicon by cold crucible continuous melting and directional solidification. Separation and Purification Technology, 2017, 188, 67-72.                                                                    | 3.9 | 23        |
| 38 | Microstructure control and creep behavior of Ti-47Al-6Nb-0.1C alloy by directional solidification.<br>Intermetallics, 2018, 94, 152-159.                                                                                                                    | 1.8 | 23        |
| 39 | Microstructure and mechanical properties of NbZrTi and NbHfZrTi alloys. Rare Metals, 2019, 38, 840-847.                                                                                                                                                     | 3.6 | 22        |
| 40 | First Phase Selection in Solid Ti/Al Diffusion Couple. Rare Metal Materials and Engineering, 2011, 40, 753-756.                                                                                                                                             | 0.8 | 21        |
| 41 | Flow field and its effect on microstructure in cold crucible directional solidification of Nb containing TiAl alloy. Journal of Materials Processing Technology, 2013, 213, 1355-1363.                                                                      | 3.1 | 21        |
| 42 | Investigation of shear transformation zone and ductility of Zr-based bulk metallic glass after<br>plasma-assisted hydrogenation. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2019, 759, 105-111. | 2.6 | 21        |
| 43 | Microstructure evolution in directionally solidified Ti–(50, 52)at%Al alloys. Intermetallics, 2011, 19,<br>175-181.                                                                                                                                         | 1.8 | 20        |
| 44 | Effect of solidification parameters on microstructural characteristics and mechanical properties of directionally solidified binary TiAl alloy. Journal of Alloys and Compounds, 2015, 650, 8-14.                                                           | 2.8 | 20        |
| 45 | Microstructure and mechanical properties of multi-phase reinforced Hf-Mo-Nb-Ti-Zr refractory<br>high-entropy alloys. International Journal of Refractory Metals and Hard Materials, 2022, 102, 105723.                                                      | 1.7 | 20        |
| 46 | Hydrogen-induced softening of Ti–44Al–6Nb–1Cr–2V alloy during hot deformation. International<br>Journal of Hydrogen Energy, 2017, 42, 8329-8337.                                                                                                            | 3.8 | 19        |
| 47 | Effect of hydrogen addition on the mechanical properties of a bulk metallic glass. Journal of Alloys and Compounds, 2017, 695, 3183-3190.                                                                                                                   | 2.8 | 19        |
| 48 | Effect of processing parameters on the microstructure and mechanical properties of TiAl/Ti2AlNb laminated composites. Journal of Materials Science and Technology, 2022, 109, 228-244.                                                                      | 5.6 | 19        |
| 49 | Faceted–nonfaceted growth transition and 3-D morphological evolution of primary<br>Al <sub>6</sub> Mn microcrystals in directionally solidified Al–3 at.% Mn alloy. Journal of Materials<br>Research, 2014, 29, 1256-1263.                                  | 1.2 | 18        |
| 50 | Hot-deformation behaviour and hot-processing map of melt-hydrogenated Ti 6Al 4V/(TiB+TiC).<br>International Journal of Hydrogen Energy, 2019, 44, 8641-8649.                                                                                                | 3.8 | 18        |
| 51 | Optimizing the microstructures and mechanical properties of Al-Cu-based alloys with large solidification intervals by coupling travelling magnetic fields with sequential solidification. Journal of Materials Science and Technology, 2021, 61, 100-113.   | 5.6 | 18        |
| 52 | Deoxidation of Ti–Al intermetallics via hydrogen treatment. International Journal of Hydrogen<br>Energy, 2010, 35, 9214-9217.                                                                                                                               | 3.8 | 17        |
| 53 | Bulk metallic glass formation: The positive effect of hydrogen. Journal of Non-Crystalline Solids, 2012, 358, 2606-2611.                                                                                                                                    | 1.5 | 17        |
| 54 | Effect of β-phase stabilizing elements and high temperature (1373–1693ÂK) on hydrogen absorption in TiAl alloys. International Journal of Hydrogen Energy, 2017, 42, 86-95.                                                                                 | 3.8 | 17        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | A novel method to prepare columnar grains of TiAl alloys by controlling induction heating.<br>International Communications in Heat and Mass Transfer, 2019, 108, 104315.                                                                        | 2.9 | 17        |
| 56 | Corrosion behaviour of a wrought Ti-6Al-3Nb-2Zr-1Mo alloy in artificial seawater with various fluoride concentrations and pH values. Materials and Design, 2022, 214, 110416.                                                                   | 3.3 | 17        |
| 57 | Directional solidification of Ti–49 at.%Al alloy. Applied Physics A: Materials Science and Processing, 2011, 105, 239-248.                                                                                                                      | 1.1 | 16        |
| 58 | Hydrogen induced softening and hardening for hot workability of (TiBÂ+ÂTiC)/Ti-6Al-4V composites.<br>International Journal of Hydrogen Energy, 2017, 42, 3380-3388.                                                                             | 3.8 | 16        |
| 59 | A novel method to directional solidification of TiAlNb alloys by mixing binary TiAl ingot and Nb wire.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2017, 687, 181-192.            | 2.6 | 16        |
| 60 | Hydrogen induced microstructure evolution of titanium matrix composites. International Journal of<br>Hydrogen Energy, 2018, 43, 9838-9847.                                                                                                      | 3.8 | 16        |
| 61 | Formation of Ti2AlN and TiB and its effect on mechanical properties of Ti46Al4Nb1Mo alloy by adding<br>BN particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure<br>and Processing, 2019, 756, 161-171. | 2.6 | 16        |
| 62 | Impact of hydrogen microalloying on the mechanical behavior of Zr-bearing metallic glasses: A<br>molecular dynamics study. Journal of Materials Science and Technology, 2020, 45, 198-206.                                                      | 5.6 | 16        |
| 63 | Optimizing microstructure, shrinkage defects and mechanical performance of ZL205A alloys via coupling travelling magnetic fields with unidirectional solidification. Journal of Materials Science and Technology, 2021, 74, 246-258.            | 5.6 | 16        |
| 64 | Manipulating internal flow units toward favorable plasticity in Zr-based bulk-metallic glasses by hydrogenation. Journal of Materials Science and Technology, 2022, 102, 36-45.                                                                 | 5.6 | 16        |
| 65 | Continued growth controlling of the non-preferred primary phase for the parallel lamellar<br>structure in directionally solidified Ti–50Al–4Nb alloy. Journal of Alloys and Compounds, 2015, 632,<br>152-160.                                   | 2.8 | 14        |
| 66 | Influence of thermal stabilization treatment on microstructure evolution of the mushy zone and subsequent directional solidification in Ti-43Al-3Si alloy. Materials and Design, 2016, 97, 392-399.                                             | 3.3 | 14        |
| 67 | Effects of hydrogen on the nanomechanical properties of a bulk metallic glass during nanoindentation. International Journal of Hydrogen Energy, 2017, 42, 25436-25445.                                                                          | 3.8 | 14        |
| 68 | The interface structure and its impact on the mechanical behavior of TiAl/Ti2AlNb laminated composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 827, 142095.                  | 2.6 | 14        |
| 69 | Effect of cyclic heat treatment on microstructures and mechanical properties of directionally<br>solidified Ti–46Al–6Nb alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 1872-1880.                                         | 1.7 | 13        |
| 70 | The hydrogen absorption behavior of high Nb contained titanium aluminides under high pressure and temperature. International Journal of Hydrogen Energy, 2016, 41, 13254-13260.                                                                 | 3.8 | 13        |
| 71 | Optimization of electromagnetic energy in cold crucible used for directional solidification of TiAl alloy. Energy, 2018, 161, 143-155.                                                                                                          | 4.5 | 13        |
| 72 | Deoxidation of bulk metallic glasses by hydrogen arc melting. Materials Letters, 2012, 83, 1-3.                                                                                                                                                 | 1.3 | 12        |

| #  | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Effect of parameters on the grain growth of silicon ingots prepared by electromagnetic cold crucible continuous casting. Journal of Crystal Growth, 2011, 332, 68-74.                                                                                                                         | 0.7 | 11        |
| 74 | Microstructure and microsegregation in directionally solidified Ti–46Al–8Nb alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 1342-1349.                                                                                                                                   | 1.7 | 11        |
| 75 | A lateral remelting phenomenon of the primary phase below the temperature of peritectic reaction in directionally solidified Cu–Ge alloys. Journal of Materials Research, 2013, 28, 3261-3269.                                                                                                | 1.2 | 11        |
| 76 | Microstructures, micro-segregation and solidification path of directionally solidified Ti-45Al-5Nb alloy. China Foundry, 2016, 13, 107-113.                                                                                                                                                   | 0.5 | 11        |
| 77 | Numerical Research on Magnetic Field, Temperature Field and Flow Field During Melting and<br>Directionally Solidifying TiAl Alloys by Electromagnetic Cold Crucible. Metallurgical and Materials<br>Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 3345-3358. | 1.0 | 11        |
| 78 | Effects of grain size and precipitated phases on mechanical properties in TiAl gradient materials.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2018, 731, 634-641.                                                              | 2.6 | 11        |
| 79 | Improving microstructure and mechanical properties of Ti43Al5Nb0.1B alloy by addition of Fe. Rare Metals, 2019, 38, 1024-1032.                                                                                                                                                                | 3.6 | 11        |
| 80 | Microstructure, tensile properties and creep behavior of high-Al TiAlNb alloy using electromagnetic cold crucible continuous casting. Journal of Alloys and Compounds, 2019, 801, 166-174.                                                                                                    | 2.8 | 11        |
| 81 | Effect of electromagnetic force on melt induced by traveling magnetic field. Transactions of Nonferrous Metals Society of China, 2010, 20, 662-667.                                                                                                                                           | 1.7 | 10        |
| 82 | Microstructural evolution of Al-Cu-Li alloys with different Li contents by coupling of near-rapid solidification and two-stage homogenization treatment. China Foundry, 2020, 17, 190-197.                                                                                                    | 0.5 | 10        |
| 83 | Effect of melt hydrogenation on microstructure evolution and tensile properties of<br>(TiB +†TiC)/Ti-6Al-4V composites. Journal of Materials Research and Technology, 2020, 9, 6343-6351.                                                                                                     | 2.6 | 10        |
| 84 | Temperature field calculation on cold crucible continuous melting and directional solidifying Ti50Al alloys. Transactions of Nonferrous Metals Society of China, 2012, 22, 647-653.                                                                                                           | 1.7 | 9         |
| 85 | The influence of melt hydrogenation on Ti600 alloy. International Journal of Hydrogen Energy, 2014, 39, 6089-6094.                                                                                                                                                                            | 3.8 | 9         |
| 86 | Local melting/solidification during peritectic solidification in a steep temperature gradient: analysis<br>of a directionally solidified Al–25at%Ni. Applied Physics A: Materials Science and Processing, 2014, 116,<br>1821-1831.                                                            | 1.1 | 9         |
| 87 | Mass transfer behaviors of oxygen during cold crucible continuous casting silicon. International<br>Journal of Heat and Mass Transfer, 2016, 100, 428-432.                                                                                                                                    | 2.5 | 9         |
| 88 | Influence of high-temperature hydrogen charging on microstructure and hot deformability of binary<br>TiAl alloys. Journal of Alloys and Compounds, 2017, 701, 399-407.                                                                                                                        | 2.8 | 9         |
| 89 | Effect of Zr on microstructure and mechanical properties of binary TiAl alloys. Transactions of Nonferrous Metals Society of China, 2018, 28, 1724-1734.                                                                                                                                      | 1.7 | 9         |
| 90 | High-throughput analysis of Al and Nb effects on mechanical behaviour of TiAl alloys using electromagnetic cold crucible continuous casting. Journal of Alloys and Compounds, 2019, 775, 124-131.                                                                                             | 2.8 | 9         |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | In-situ study on γ phase transformation behaviour of γ-TiAl alloys at different cooling rates. Progress<br>in Natural Science: Materials International, 2022, 32, 345-357.                                                                                        | 1.8 | 9         |
| 92  | Tuning microstructure and improving the corrosion resistance of Ti-6Al-3Nb-2Zr-1Mo alloy using the electron beam freeform fabrication. Chemical Engineering Journal, 2022, 444, 136524.                                                                           | 6.6 | 9         |
| 93  | Tailoring formation and proportion of strengthening phase in non-equiatomic CoCrFeNi high entropy<br>alloy by alloying Si element. Intermetallics, 2022, 147, 107617.                                                                                             | 1.8 | 9         |
| 94  | Morphological characteristics of triple junction region and process of the peritectic reaction<br>during directional solidification of Cu–Ge alloys. Journal of Alloys and Compounds, 2012, 539, 44-49.                                                           | 2.8 | 8         |
| 95  | Lamellar orientation control of Ti–47Al–0.5W–0.5Si by directional solidification using β seeding<br>technique. Intermetallics, 2016, 73, 1-4.                                                                                                                     | 1.8 | 8         |
| 96  | Macro/microstructure evolution and mechanical properties of Ti33.3Al alloys by adding WC particles.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2018, 725, 171-180.                                 | 2.6 | 8         |
| 97  | Positive effect of hydrogen on interface of in situ synthesized Ti-6Al-4V matrix composites. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018,<br>711, 12-21.                                          | 2.6 | 8         |
| 98  | The growth behavior of columnar grains in a TiAl alloy during directional induction heat treatments.<br>CrystEngComm, 2020, 22, 1188-1196.                                                                                                                        | 1.3 | 8         |
| 99  | Impact of laser scanning speed on microstructure and mechanical properties of Inconel 718 alloys by selective laser melting. China Foundry, 2021, 18, 170-179.                                                                                                    | 0.5 | 8         |
| 100 | Design a novel TiAl/Ti2AlNb laminated composite with high toughness prepared by foil-foil metallurgy.<br>Materials Letters, 2021, 303, 130463.                                                                                                                    | 1.3 | 8         |
| 101 | Enhanced strength and fracture characteristics of the TiAl/Ti2AlNb laminated composite. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022,<br>835, 142632.                                              | 2.6 | 8         |
| 102 | Fabrication of wavy γ-TiAl based sheet with foil metallurgy. Transactions of Nonferrous Metals Society of China, 2012, 22, 72-77.                                                                                                                                 | 1.7 | 7         |
| 103 | Electrical resistivity distribution of silicon ingot grown by cold crucible continuous melting and directional solidification. Materials Science in Semiconductor Processing, 2014, 23, 14-19.                                                                    | 1.9 | 7         |
| 104 | Eliminating shrinkage defects and improving mechanical performance of large thin-walled ZL205A<br>alloy castings by coupling travelling magnetic fields with sequential solidification. Transactions of<br>Nonferrous Metals Society of China, 2021, 31, 865-877. | 1.7 | 7         |
| 105 | Influence of initial solid–liquid interface morphology on further microstructure evolution during directional solidification. Applied Physics A: Materials Science and Processing, 2013, 110, 443-451.                                                            | 1.1 | 6         |
| 106 | Effect of growth rate and diameter on microstructure and hardness of directionally solidified<br>Ti–46Al–8Nb alloy. Transactions of Nonferrous Metals Society of China, 2014, 24, 4044-4052.                                                                      | 1.7 | 6         |
| 107 | Microstructure and room temperature tensile property of as-cast Ti44Al6Nb1.0Cr2.0V alloy.<br>Transactions of Nonferrous Metals Society of China, 2015, 25, 1097-1105.                                                                                             | 1.7 | 6         |
| 108 | Creep Behavior of Highâ€Nb TiAl Alloy at 800–900 °C by Directional Solidification. Advanced Engineering                                                                                                                                                           | 1.6 | 6         |

Materials, 2018, 20, 1700734.

| #   | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | A Comparative Study on Microstructure and Mechanical Properties of Tiâ€43/46Al–5Nb–0.1B Alloys<br>Modified by Mo. Advanced Engineering Materials, 2020, 22, 1901075.                                                                            | 1.6 | 6         |
| 110 | Thermal deformation behavior of γ-TiAl based alloy by plasma hydrogenation. International Journal of<br>Hydrogen Energy, 2020, 45, 34214-34226.                                                                                                 | 3.8 | 6         |
| 111 | In-situ investigation of β/α transformation in β-solidifying γ-TiAl alloys at different cooling rates.<br>Materials Letters, 2021, 285, 129092.                                                                                                 | 1.3 | 6         |
| 112 | Significant enhancement of the corrosion performance of Ti-6Al-3Nb-2Zr-1Mo alloy via carbon addition in reducing acid environment. Materials Letters, 2022, 306, 130939.                                                                        | 1.3 | 6         |
| 113 | Two-phase separated growth and peritectic reaction during directional solidification of Cu–Ge peritectic alloys. Journal of Materials Research, 2013, 28, 1372-1377.                                                                            | 1.2 | 5         |
| 114 | Effect of heat treatment on microstructure and mechanical properties of cast and directionally solidified high-Nb contained TiAl-based alloys. Journal of Materials Research, 2015, 30, 3331-3342.                                              | 1.2 | 5         |
| 115 | In-situ observation microstructure evolution and growth kinetics of lamellar γ phases in Ti44Al alloy<br>during heat treatment. Journal of Materials Research and Technology, 2020, 9, 12157-12166.                                             | 2.6 | 5         |
| 116 | Effect of hydrogen on interfacial reaction between Ti-6Al-4V alloy melt and graphite mold. Journal of<br>Materials Research and Technology, 2020, 9, 6933-6939.                                                                                 | 2.6 | 5         |
| 117 | Study on dispersion of Ti2AlC particle and formation of columnar crystal with different solidification rates during CCDS TiAl-based composite. Journal of Alloys and Compounds, 2020, 832, 154893.                                              | 2.8 | 5         |
| 118 | Microstructure and microhardness of Ti-48Al alloy prepared by rapid solidification. China Foundry, 2020, 17, 429-434.                                                                                                                           | 0.5 | 5         |
| 119 | Solidification behavior and microstructure evolution of Nb-Si-Mo alloy in ultrasonic field.<br>International Journal of Refractory Metals and Hard Materials, 2022, 108, 105933.                                                                | 1.7 | 5         |
| 120 | Effects of hydrogenation on ambient deformation behaviors of Ti-45Al alloy. Transactions of Nonferrous Metals Society of China, 2009, 19, s403-s408.                                                                                            | 1.7 | 4         |
| 121 | Effect of traveling magnetic field on gas porosity during solidification. Transactions of Nonferrous<br>Metals Society of China, 2011, 21, 1981-1985.                                                                                           | 1.7 | 4         |
| 122 | Characterization of hydrogen-induced structural changes in Zr-based bulk metallic glasses using positron annihilation spectroscopy. Journal of Materials Research, 2012, 27, 2587-2592.                                                         | 1.2 | 4         |
| 123 | Uniformity analysis of magnetic field in an electromagnetic cold crucible used for directional solidification. COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2013, 32, 997-1008. | 0.5 | 4         |
| 124 | Characterization of p-type multicrystalline silicon prepared by cold crucible continuous melting and directional solidification. Materials Science in Semiconductor Processing, 2017, 68, 62-67.                                                | 1.9 | 4         |
| 125 | Microstructures and mechanical properties of melt hydrogenated Nb-Si based alloy. International Journal of Hydrogen Energy, 2017, 42, 26417-26422.                                                                                              | 3.8 | 4         |
| 126 | Effect of a Traveling Magnetic Field on Micropore Formation in Al-Cu Alloys. Metals, 2018, 8, 448.                                                                                                                                              | 1.0 | 4         |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Microstructures and mechanical properties of Ti–44Al–5Nb–3Cr–1.5Zr–xMo–yB alloys. Journal of<br>Materials Research, 2020, 35, 2756-2764.                                                                               | 1.2 | 4         |
| 128 | EFFECT OF <font>Li/Nb</font> RATIO ON GROWTH AND SPECTROMETRIC CHARACTERIZATION OF<br><font>Hf</font> : <font>Fe</font> : <font>LiNbO</font> <sub>3</sub> CRYSTALS. Modern Physics<br>Letters B, 2009, 23, 1557-1565.  | 1.0 | 3         |
| 129 | EFFECT OF <font>HfO</font> <sub>2</sub> -CODOPING CONCENTRATION ON THE OPTICAL PROPERTIES OF<br><font>Er</font> <sup>3+</sup> -DOPED <font>LiNbO</font> <sub>3</sub> . Modern Physics Letters B,<br>2010, 24, 495-502. | 1.0 | 3         |
| 130 | Effect of growth rate on microstructures and microhardness in directionally solidified<br>Ti–47Al–1.0W–0.5Si alloy. Journal of Materials Research, 2016, 31, 618-626.                                                  | 1.2 | 3         |
| 131 | Effects of hydrogen on the interfacial reaction between Ti 6Al 4V alloy melt and Al2O3 ceramic shell.<br>International Journal of Hydrogen Energy, 2018, 43, 5225-5230.                                                | 3.8 | 3         |
| 132 | Microstructure and mechanical properties of Ti43Al6Nb alloys with different zirconium contents.<br>Rare Metals, 2018, , 1.                                                                                             | 3.6 | 3         |
| 133 | Boride Formation, Microstructure Evolution, and Mechanical Properties of Ti42Al6Nb2.6C0.8Ta<br>Alloyed by Boron. Advanced Engineering Materials, 2019, 21, 1800934.                                                    | 1.6 | 3         |
| 134 | Influence of laser parameters on segregation of Nb during selective laser melting of Inconel 718.<br>China Foundry, 2021, 18, 379-388.                                                                                 | 0.5 | 3         |
| 135 | On the solidification behaviors of AlCu5MnCdVA alloy in electron beam freeform fabrication:<br>Microstructural evolution, Cu segregation and cracking resistance. Additive Manufacturing, 2022, 51,<br>102606.         | 1.7 | 3         |
| 136 | Characterization of microstructural length scales in directionally solidified Sn–36%Ni peritectic alloy. Transactions of Nonferrous Metals Society of China, 2013, 23, 2446-2453.                                      | 1.7 | 2         |
| 137 | Microstructure and Mechanical Properties of Bioâ€Inspired Ti/Al/Al <sub>f</sub> Multilayered<br>Composites. Advanced Engineering Materials, 2019, 21, 1800722.                                                         | 1.6 | 2         |
| 138 | JUDD–OFELT THEORY ANALYSIS AND SPECTROSCOPIC PROPERTIES OF Ho:LiNbO3. Modern Physics Letters B, 2009, 23, 3235-3242.                                                                                                   | 1.0 | 1         |
| 139 | Microstructure and mechanical properties of Ti44Al6Nb1Cr2V alloy after gaseous hydrogen charging<br>at 1373–1693ÂK. Rare Metals, 2023, 42, 664-671.                                                                    | 3.6 | 1         |
| 140 | Effects of Heating Power on Microstructure Evolution and Tensile Properties at Elevated<br>Temperature by Directional Solidification for Ti2AlC/TiAl Composites. Advanced Engineering Materials,<br>0, , 2100736.      | 1.6 | 1         |
| 141 | Effect of growth rate on microstructure evolution in directionally solidified Ti–47Al alloy. Heliyon, 2022, 8, e08704.                                                                                                 | 1.4 | 1         |
| 142 | Continuous Casting of TiAlNb Alloys with Different Velocities by Mixing Binary TiAl Ingot and Nb Wire.<br>Advanced Engineering Materials, 2017, 19, 1700058.                                                           | 1.6 | 0         |
| 143 | Hydrogen-induced amorphization of Zr-Cu-Ni-Al alloy. China Foundry, 2017, 14, 145-150.                                                                                                                                 | 0.5 | 0         |
| 144 | Microstructures and properties of Nb–Si-based alloys with B addition. Rare Metals, 2019, , 1.                                                                                                                          | 3.6 | 0         |

| #   | Article                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Microstructures and phase transformation in directionally solidified TiAl-Nb alloys. China Foundry, 2020, 17, 402-408. | 0.5 | 0         |