Aliaksandr S Bandarenka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5253282/publications.pdf

Version: 2024-02-01

134 papers 5,453 citations

38 h-index 95218 68 g-index

137 all docs

137 does citations

times ranked

137

6181 citing authors

#	Article	IF	CITATIONS
1	Structure-reactivity relations in electrocatalysis. , 2023, , 419-436.		2
2	A Systematic Study of the Influence of Electrolyte Ions on the Electrode Activity. ChemElectroChem, 2022, 9, .	1.7	8
3	Exploration of the electrical double-layer structure: Influence of electrolyte components on the double-layer capacitance and potential of maximum entropy. Current Opinion in Electrochemistry, 2022, 32, 100882.	2.5	10
4	Electrolyte Effects on the Stabilization of Prussian Blue Analogue Electrodes in Aqueous Sodium-Ion Batteries. ACS Applied Materials & Electrodes, 2022, 14, 3515-3525.	4.0	27
5	Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOFâ€Derived Electrocatalysts. ChemElectroChem, 2022, 9, .	1.7	12
6	Dual In Situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
7	Cover Feature: Avoiding Pyrolysis and Calcination: Advances in the Benign Routes Leading to MOFâ€Derived Electrocatalysts (ChemElectroChem 7/2022). ChemElectroChem, 2022, 9, .	1.7	0
8	Correlative Electrochemical Microscopy for the Elucidation of the Local Ionic and Electronic Properties of the Solid Electrolyte Interphase in Liâ€lon Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
9	Li ⁺ Conductivity of Space Charge Layers Formed at Electrified Interfaces Between a Model Solid-State Electrolyte and Blocking Au-Electrodes. ACS Applied Materials & Diterfaces, 2022, 14, 15811-15817.	4.0	12
10	Korrelative elektrochemische Mikroskopie zur AufklÃrung der lokalen ionischen und elektronischen Eigenschaften der Festkörperâ€Elektrolyt Zwischenphase in Li″onenâ€Batterien. Angewandte Chemie, 2022, 134, .	1.6	2
11	Dual In Situ Laser Techniques Underpin the Role of Cations in Impacting Electrocatalysts. Angewandte Chemie, 2022, 134, .	1.6	7
12	Revealing the Nature of Active Sites on Pt–Gd and Pt–Pr Alloys during the Oxygen Reduction Reaction. ACS Applied Materials & Diterfaces, 2022, 14, 19604-19613.	4.0	16
13	Spatially Resolved Electrochemical Impedance Spectroscopy of Automotive PEM Fuel Cells. ChemElectroChem, 2022, 9, .	1.7	2
14	Finding efficient catalyst designs: A high-precision method to reveal active sites. Chem Catalysis, 2022, 2, 657-659.	2.9	0
15	Elucidation of Structure–Activity Relations in Proton Electroreduction at Pd Surfaces: Theoretical and Experimental Study. Small, 2022, 18, .	5.2	7
16	Modeling of Space-Charge Layers in Solid-State Electrolytes: A Kinetic Monte Carlo Approach and Its Validation. Journal of Physical Chemistry C, 2022, 126, 10900-10909.	1.5	6
17	Structure-Dependent Electrical Double-Layer Capacitances of the Basal Plane Pd(<i>hkl</i>) Electrodes in HClO ₄ . Journal of Physical Chemistry C, 2022, 126, 11414-11420.	1.5	5
18	In Situ Quantification of the Local Electrocatalytic Activity via Electrochemical Scanning Tunneling Microscopy. Small Methods, 2021, 5, e2000710.	4.6	23

#	Article	IF	CITATIONS
19	Analysis of the Capacitive Behavior of Polymer Electrolyte Membrane Fuel Cells during Operation. ChemElectroChem, 2021, 8, 96-102.	1.7	1
20	Monitoring the active sites for the hydrogen evolution reaction at model carbon surfaces. Physical Chemistry Chemical Physics, 2021, 23, 10051-10058.	1.3	21
21	Review on physical impedance models in modern battery research. Physical Chemistry Chemical Physics, 2021, 23, 12926-12944.	1.3	34
22	Properties of the Space Charge Layers Formed in Li-Ion Conducting Glass Ceramics. ACS Applied Materials & Distribution (1988).	4.0	27
23	The Potential of Zero Charge and the Electrochemical Interface Structure of Cu(111) in Alkaline Solutions. Journal of Physical Chemistry C, 2021, 125, 5020-5028.	1.5	33
24	Assessment of active areas for the oxygen evolution reaction on an amorphous iridium oxide surface. Journal of Catalysis, 2021, 396, 14-22.	3.1	23
25	Investigation of degradation mechanisms in PEM fuel cells caused by low-temperature cycles. International Journal of Hydrogen Energy, 2021, 46, 15951-15964.	3.8	15
26	Characterization and Quantification of Depletion and Accumulation Layers in Solidâ€State Li ⁺ â€Conducting Electrolytes Using In Situ Spectroscopic Ellipsometry. Advanced Materials, 2021, 33, e2100585.	11.1	17
27	In-situ detection of active sites for carbon-based bifunctional oxygen reduction and evolution catalysis. Electrochimica Acta, 2021, 382, 138285.	2.6	15
28	Solidâ€State Electrolytes: Characterization and Quantification of Depletion and Accumulation Layers in Solidâ€State Li ⁺ â€Conducting Electrolytes Using In Situ Spectroscopic Ellipsometry (Adv.) Tj ETQq	0 01 0.1 gBT	/Owerlock 10
29	Spotlight on the Effect of Electrolyte Composition on the Potential of Maximum Entropy: Supporting Electrolytes Are Not Always Inert. Chemistry - A European Journal, 2021, 27, 10016-10020.	1.7	10
30	Metamorphosis of Heterostructured Surfaceâ€Mounted Metal–Organic Frameworks Yielding Record Oxygen Evolution Mass Activities. Advanced Materials, 2021, 33, e2103218.	11.1	43
31	A Review on Experimental Identification of Active Sites in Model Bifunctional Electrocatalytic Systems for Oxygen Reduction and Evolution Reactions. ChemElectroChem, 2021, 8, 3433-3456.	1.7	13
32	Temperature dependences of the double layer capacitance of some solid/liquid and solid/solid electrified interfaces. An experimental study. Electrochimica Acta, 2021, 391, 138969.	2.6	9
33	Fast and accurate determination of the electroactive surface area of MnOx. Electrochimica Acta, 2021, 389, 138692.	2.6	8
34	Dynamic and precise temperature control unit for <scp>PEMFC</scp> singleâ€eell testing. Engineering Reports, 2021, 3, e12345.	0.9	1
35	Electrochemical top-down synthesis of C-supported Pt nano-particles with controllable shape and size: Mechanistic insights and application. Nano Research, 2021, 14, 2762-2769.	5.8	18
36	Nanosized and metastable molybdenum oxides as negative electrode materials for durable high-energy aqueous Li-ion batteries. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15

#	Article	IF	Citations
37	Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surfaceâ€Mounted Metal–Organic Frameworks. Angewandte Chemie, 2020, 132, 5886-5892.	1.6	16
38	Advanced Bifunctional Oxygen Reduction and Evolution Electrocatalyst Derived from Surfaceâ€Mounted Metal–Organic Frameworks. Angewandte Chemie - International Edition, 2020, 59, 5837-5843.	7.2	99
39	In situ Probing of Mn ₂ O ₃ Activation toward Oxygen Electroreduction by the Laser-Induced Current Transient Technique. ACS Applied Energy Materials, 2020, 3, 9151-9157.	2.5	12
40	Applicability of double layer capacitance measurements to monitor local temperature changes at polymer electrolyte membrane fuel cell cathodes. Results in Chemistry, 2020, 2, 100078.	0.9	5
41	How the Nature of the Alkali Metal Cations Influences the Double-Layer Capacitance of Cu, Au, and Pt Single-Crystal Electrodes. Journal of Physical Chemistry C, 2020, 124, 12442-12447.	1.5	37
42	Realâ€Time Impedance Analysis for the Onâ€Road Monitoring of Automotive Fuel Cells. ChemElectroChem, 2020, 7, 2784-2791.	1.7	8
43	Temperature Effects in Polymer Electrolyte Membrane Fuel Cells. ChemElectroChem, 2020, 7, 3545-3568.	1.7	34
44	AktivitÃ t ssteigerung der Wasserstoffentwicklung von Platinelektroden in alkalischen Medien unter Verwendung von Niâ€Feâ€Clustern. Angewandte Chemie, 2020, 132, 11026-11031.	1.6	8
45	Enhancing the Hydrogen Evolution Reaction Activity of Platinum Electrodes in Alkaline Media Using Nickel–Iron Clusters. Angewandte Chemie - International Edition, 2020, 59, 10934-10938.	7.2	70
46	Tailoring the Oxygen Reduction Activity of Pt Nanoparticles through Surface Defects: A Simple Top-Down Approach. ACS Catalysis, 2020, 10, 3131-3142.	5.5	50
47	Oxygen Reduction Activities of Strained Platinum Core–Shell Electrocatalysts Predicted by Machine Learning. Journal of Physical Chemistry Letters, 2020, 11, 1773-1780.	2.1	31
48	Prospects of Valueâ€Added Chemicals and Hydrogen via Electrolysis. ChemSusChem, 2020, 13, 2513-2521.	3.6	70
49	Recent Approaches to Design Electrocatalysts Based on Metal–Organic Frameworks and Their Derivatives. Chemistry - an Asian Journal, 2019, 14, 3474-3501.	1.7	34
50	A Cell for Controllable Formation and In Operando Electrochemical Characterization of Intercalation Materials for Aqueous Metalâ€lon Batteries. Small Methods, 2019, 3, 1900445.	4.6	4
51	In-situ visualization of hydrogen evolution sites on helium ion treated molybdenum dichalcogenides under reaction conditions. Npj 2D Materials and Applications, 2019, 3, .	3.9	35
52	Revealing the nature of active sites in electrocatalysis. Chemical Science, 2019, 10, 8060-8075.	3.7	96
53	Determination of Electroactive Surface Area of Ni-, Co-, Fe-, and Ir-Based Oxide Electrocatalysts. ACS Catalysis, 2019, 9, 9222-9230.	5.5	80
54	The nature of active centers catalyzing oxygen electro-reduction at platinum surfaces in alkaline media. Energy and Environmental Science, 2019, 12, 351-357.	15.6	38

#	Article	IF	CITATIONS
55	Fast identification of optimal pure platinum nanoparticle shapes and sizes for efficient oxygen electroreduction. Nanoscale Advances, 2019, 1, 2901-2909.	2.2	12
56	Degradation mechanisms in polymer electrolyte membrane fuel cells caused by freeze-cycles: Investigation using electrochemical impedance spectroscopy. Electrochimica Acta, 2019, 311, 21-29.	2.6	36
57	Optimierung der Größe von Platinâ€Nanopartikeln fÃ⅓r eine erhöhte Massenaktivitäder elektrochemischen Sauerstoffreduktion. Angewandte Chemie, 2019, 131, 9697-9702.	1.6	9
58	Optimizing the Size of Platinum Nanoparticles for Enhanced Mass Activity in the Electrochemical Oxygen Reduction Reaction. Angewandte Chemie - International Edition, 2019, 58, 9596-9600.	7.2	100
59	Unprecedented High Oxygen Evolution Activity of Electrocatalysts Derived from Surface-Mounted Metal–Organic Frameworks. Journal of the American Chemical Society, 2019, 141, 5926-5933.	6.6	125
60	Intercalation of Mg2+ into electrodeposited Prussian Blue Analogue thin films from aqueous electrolytes. Electrochimica Acta, 2019, 307, 157-163.	2.6	17
61	Revealing Active Sites for Hydrogen Evolution at Pt and Pd Atomic Layers on Au Surfaces. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12476-12480.	4.0	23
62	Electrochemical Scanning Probe Microscopies in Electrocatalysis. Small Methods, 2019, 3, 1800387.	4.6	50
63	Top-Down Synthesis of Nanostructured Platinum–Lanthanide Alloy Oxygen Reduction Reaction Catalysts: Pt _{<i>x</i>} Pr/C as an Example. ACS Applied Materials & Interfaces, 2019, 11, 5129-5135.	4.0	60
64	Theoretical and experimental identification of active electrocatalytic surface sites. Current Opinion in Electrochemistry, 2019, 14, 206-213.	2. 5	12
65	Frontispiece: Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie - International Edition, 2018, 57, .	7.2	1
66	Electrodeposited Na ₂ Ni[Fe(CN) ₆] Thin-Film Cathodes Exposed to Simulated Aqueous Na-Ion Battery Conditions. Journal of Physical Chemistry C, 2018, 122, 8760-8768.	1.5	37
67	High oxygen reduction reaction activity of Pt5Pr electrodes in acidic media. Electrochemistry Communications, 2018, 88, 10-14.	2.3	26
68	Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie - International Edition, 2018, 57, 2800-2805.	7.2	72
69	Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie, 2018, 130, 2850-2855.	1.6	10
70	Electrochemically Formed Na _{<i>x</i>} Mn[Mn(CN) ₆] Thin Film Anodes Demonstrate Sodium Intercalation and Deintercalation at Extremely Negative Electrode Potentials in Aqueous Media. ACS Applied Energy Materials, 2018, 1, 123-128.	2.5	16
71	Frontispiz: Elucidation of the Oxygen Reduction Volcano in Alkaline Media using a Copper–Platinum(111) Alloy. Angewandte Chemie, 2018, 130, .	1.6	O
72	Enabling Generalized Coordination Numbers to Describe Strain Effects. ChemSusChem, 2018, 11, 1824-1828.	3.6	57

#	Article	IF	Citations
73	Multistage Mechanism of Lithium Intercalation into Graphite Anodes in the Presence of the Solid Electrolyte Interface. ACS Applied Materials & Interfaces, 2018, 10, 14063-14069.	4.0	30
74	A Comprehensive Physical Impedance Model of Polymer Electrolyte Fuel Cell Cathodes in Oxygen-free Atmosphere. Scientific Reports, 2018, 8, 4933.	1.6	27
75	Influence of the Nature of the Alkali Metal Cations on the Electrical Double-Layer Capacitance of Model Pt(111) and Au(111) Electrodes. Journal of Physical Chemistry Letters, 2018, 9, 1927-1930.	2.1	68
76	Oxygen Electroreduction at High-Index Pt Electrodes in Alkaline Electrolytes: A Decisive Role of the Alkali Metal Cations. ACS Omega, 2018, 3, 15325-15331.	1.6	39
77	Intrinsic Activity of Some Oxygen and Hydrogen Evolution Reaction Electrocatalysts under Industrially Relevant Conditions. ACS Applied Energy Materials, 2018, 1, 4196-4202.	2.5	14
78	Oxygen Reduction Reaction: Rapid Prediction of Mass Activity of Nanostructured Platinum Electrocatalysts. Journal of Physical Chemistry Letters, 2018, 9, 4463-4468.	2.1	43
79	Chromium(II) Hexacyanoferrate-Based Thin Films as a Material for Aqueous Alkali Metal Cation Batteries. ACS Omega, 2018, 3, 5111-5115.	1.6	9
80	On the Dominating Mechanism of the Hydrogen Evolution Reaction at Polycrystalline Pt Electrodes in Acidic Media. ACS Catalysis, 2018, 8, 9456-9462.	5.5	46
81	Multiple Potentials of Maximum Entropy for a Na ₂ Co[Fe(CN) ₆] Battery Electrode Material: Does the Electrolyte Composition Control the Interface?. ACS Applied Materials & Amp; Interfaces, 2018, 10, 21688-21695.	4.0	13
82	Influence of Alkali Metal Cations on the Hydrogen Evolution Reaction Activity of Pt, Ir, Au, and Ag Electrodes in Alkaline Electrolytes. ChemElectroChem, 2018, 5, 2326-2329.	1.7	95
83	Electrodeposited Na ₂ VO _{<i>x</i>} [Fe(CN) ₆] films As a Cathode Material for Aqueous Na-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2017, 9, 8107-8112.	4.0	69
84	Quantitative Coordination–Activity Relations for the Design of Enhanced Pt Catalysts for CO Electro-oxidation. ACS Catalysis, 2017, 7, 4355-4359.	5.5	45
85	On the pH Dependence of the Potential of Maximum Entropy of Ir(111) Electrodes. Scientific Reports, 2017, 7, 1246.	1.6	37
86	What Do Laser-Induced Transient Techniques Reveal for Batteries? Na- and K-Intercalation from Aqueous Electrolytes as an Example. ACS Applied Materials & Interfaces, 2017, 9, 20213-20222.	4.0	21
87	Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction. Chemical Science, 2017, 8, 2283-2289.	3.7	173
88	Synergistically Enhanced Electrochemical Performance of Hierarchical MoS ₂ /TiNb ₂ O ₇ Hetero-nanostructures as Anode Materials for Li-lon Batteries. ACS Nano, 2017, 11, 1026-1033.	7.3	89
89	Reconsidering Water Electrolysis: Producing Hydrogen at Cathodes Together with Selective Oxidation of ⟨i⟩n⟨ i⟩â€Butylamine at Anodes. ChemSusChem, 2017, 10, 4812-4816.	3.6	27
90	Direct instrumental identification of catalytically active surface sites. Nature, 2017, 549, 74-77.	13.7	199

#	Article	IF	CITATIONS
91	Engineering of Highly Active Silver Nanoparticles for Oxygen Electroreduction via Simultaneous Control over Their Shape and Size. Advanced Sustainable Systems, 2017, 1, 1700117.	2.7	13
92	Nature of Highly Active Electrocatalytic Sites for the Hydrogen Evolution Reaction at Pt Electrodes in Acidic Media. ACS Omega, 2017, 2, 8141-8147.	1.6	46
93	Pt Alloy Electrocatalysts for the Oxygen Reduction Reaction: From Model Surfaces to Nanostructured Systems. ACS Catalysis, 2016, 6, 5378-5385.	5 . 5	130
94	Quick Determination of Electroactive Surface Area of Some Oxide Electrode Materials. Electroanalysis, 2016, 28, 2394-2399.	1.5	57
95	The Mechanism of the Interfacial Charge and Mass Transfer during Intercalation of Alkali Metal Cations. Advanced Science, 2016, 3, 1600211.	5.6	32
96	Kinetic Passivation Effect of Localized Differential Aeration on Brass. ChemPlusChem, 2016, 81, 49-57.	1.3	4
97	Anodic Desorption Monitored by Voltammetric and Gravimetric Measurements for Fast Estimation of Surface Coverage of Complex Organic Molecules on Au Electrodes. Electroanalysis, 2016, 28, 2382-2388.	1.5	0
98	Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster. Nature Communications, 2016, 7, 10990.	5.8	97
99	How simple are the models of Na intercalation in aqueous media?. Energy and Environmental Science, 2016, 9, 955-961.	15.6	51
100	Benchmarking the Performance of Thin-Film Oxide Electrocatalysts for Gas Evolution Reactions at High Current Densities. ACS Catalysis, 2016, 6, 3017-3024.	5 . 5	26
101	In Situ Characterization of Ultrathin Films by Scanning Electrochemical Impedance Microscopy. Analytical Chemistry, 2016, 88, 3354-3362.	3.2	21
102	Elucidation of adsorption processes at the surface of Pt(331) model electrocatalysts in acidic aqueous media. Physical Chemistry Chemical Physics, 2016, 18, 10792-10799.	1.3	17
103	Influence of the electrolyte composition on the activity and selectivity of electrocatalytic centers. Catalysis Today, 2016, 262, 24-35.	2.2	48
104	Influence of the alkali metal cations on the activity of $Pt(111)$ towards model electrocatalytic reactions in acidic sulfuric media. Catalysis Today, 2015, 244, 96-102.	2.2	33
105	Electropolymerization: Further Insight into the Formation of Conducting Polyindole Thin Films. Journal of Physical Chemistry C, 2015, 119, 1996-2003.	1.5	30
106	Evaluation of the Electrochemical Stability of Model Cu-Pt(111) Near-Surface Alloy Catalysts. Electrochimica Acta, 2015, 179, 469-474.	2.6	12
107	Non-covalent interactions in water electrolysis: influence on the activity of Pt(111) and iridium oxide catalysts in acidic media. Physical Chemistry Chemical Physics, 2015, 17, 8349-8355.	1.3	39
108	Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science, 2015, 350, 185-189.	6.0	725

#	Article	IF	Citations
109	Detection of 2D phase transitions at the electrode/electrolyte interface using electrochemical impedance spectroscopy. Surface Science, 2015, 631, 81-87.	0.8	13
110	Experimental Aspects in Benchmarking of the Electrocatalytic Activity. ChemElectroChem, 2015, 2, 143-149.	1.7	57
111	Position of Cu Atoms at the Pt(111) Electrode Surfaces Controls Electrosorption of (H)SO ₄ ^{(2)a^'} from H ₂ SO ₄ Electrolytes. ChemElectroChem, 2014, 1, 213-219.	1.7	5
112	Characterisation of localised corrosion processes using scanning electrochemical impedance microscopy. Electrochemistry Communications, 2014, 44, 38-41.	2.3	28
113	Characterisation of Complex Electrode Processes using Simultaneous Impedance Spectroscopy and Electrochemical Nanogravimetric Measurements. ChemPlusChem, 2014, 79, 348-358.	1.3	3
114	Characterisation of non-uniform functional surfaces: towards linking basic surface properties with electrocatalytic activity. RSC Advances, 2014, 4, 1532-1537.	1.7	6
115	Elucidating the activity of stepped Pt single crystals for oxygen reduction. Physical Chemistry Chemical Physics, 2014, 16, 13625.	1.3	92
116	Techniques and methodologies in modern electrocatalysis: evaluation of activity, selectivity and stability of catalytic materials. Analyst, The, 2014, 139, 1274.	1.7	38
117	Local visualization of catalytic activity at gas evolving electrodes using frequency-dependent scanning electrochemical microscopy. Chemical Communications, 2014, 50, 13250-13253.	2.2	27
118	Localized Impedance Measurements for Electrochemical Surface Science. Journal of Physical Chemistry C, 2014, 118, 8952-8959.	1.5	24
119	Oxygen Reduction at a Cu-Modified Pt(111) Model Electrocatalyst in Contact with Nafion Polymer. ACS Catalysis, 2014, 4, 3772-3778.	5.5	47
120	Revealing onset potentials using electrochemical microscopy to assess the catalytic activity of gas-evolving electrodes. Electrochemistry Communications, 2014, 38, 142-145.	2.3	22
121	Exploring the interfaces between metal electrodes and aqueous electrolytes with electrochemical impedance spectroscopy. Analyst, The, 2013, 138, 5540.	1.7	89
122	Electrochemical formation and surface characterisation of Cu2â^'xTe thin films with adjustable content of Cu. RSC Advances, 2013, 3, 21648.	1.7	8
123	Multiparametric Characterization of Nonelectroactive Self-Assembled Monolayers During Their Formation. Langmuir, 2013, 29, 9909-9917.	1.6	3
124	Novel approach of processing electrical bioimpedance data using differential impedance analysis. Medical Engineering and Physics, 2013, 35, 1349-1357.	0.8	33
125	A versatile electrochemical cell for the preparation and characterisation of model electrocatalytic systems. Physical Chemistry Chemical Physics, 2013, 15, 12998.	1.3	16
126	Theoretical design and experimental implementation of Ag/Au electrodes for the electrochemical reduction of nitrate. Physical Chemistry Chemical Physics, 2013, 15, 3196.	1.3	98

#	Article	IF	CITATIONS
127	The constant phase element reveals 2D phase transitions in adsorbate layers at the electrode/electrolyte interfaces. Electrochemistry Communications, 2013, 27, 42-45.	2.3	25
128	Preparation of thin film Cu–Pt(111) near-surface alloys: One small step towards up-scaling model single crystal surfaces. Electrochimica Acta, 2013, 112, 887-893.	2.6	7
129	Localized Electrochemical Impedance Spectroscopy: Visualization of Spatial Distributions of the Key Parameters Describing Solid/Liquid Interfaces. Analytical Chemistry, 2013, 85, 2443-2448.	3.2	42
130	Tailoring the catalytic activity of electrodes with monolayer amounts of foreign metals. Chemical Society Reviews, 2013, 42, 5210.	18.7	202
131	Structural and electronic effects in heterogeneous electrocatalysis: Toward a rational design of electrocatalysts. Journal of Catalysis, 2013, 308, 11-24.	3.1	132
132	Design of an Active Site towards Optimal Electrocatalysis: Overlayers, Surface Alloys and Nearâ€Surface Alloys of Cu/Pt(111). Angewandte Chemie - International Edition, 2012, 51, 11845-11848.	7.2	94
133	In depth analysis of complex interfacial processes: in situ electrochemical characterization of deposition of atomic layers of Cu, Pb and Te on Pd electrodes. RSC Advances, 2012, 2, 10994.	1.7	17
134	Prospects of Using the Laserâ€Induced Temperature Jump Techniques for Characterisation of Electrochemical Systems. ChemElectroChem, 0, , .	1.7	1