Rasmus Benestad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5252819/publications.pdf Version: 2024-02-01

		126907	128289
93	4,492	33	60
papers	citations	h-index	g-index
113	113	113	5421
all docs	docs citations	times ranked	citing authors

PASMUS RENESTAD

#	Article	IF	CITATIONS
1	IMILAST: A Community Effort to Intercompare Extratropical Cyclone Detection and Tracking Algorithms. Bulletin of the American Meteorological Society, 2013, 94, 529-547.	3.3	391
2	Temperature and Precipitation Development at Svalbard 1900–2100. Advances in Meteorology, 2011, 2011, 1-14.	1.6	252
3	Atmospheric composition change: Climate–Chemistry interactions. Atmospheric Environment, 2009, 43, 5138-5192.	4.1	243
4	Uncertainty in climate change impacts on water resources. Environmental Science and Policy, 2018, 79, 1-8.	4.9	239
5	Regional climate downscaling over Europe: perspectives from the EURO-CORDEX community. Regional Environmental Change, 2020, 20, 1.	2.9	227
6	Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environmental Research Letters, 2014, 9, 114021.	5.2	179
7	Statistical downscaling of climate scenarios over Scandinavia. Climate Research, 2005, 29, 255-268.	1.1	158
8	A comparison between two empirical downscaling strategies. International Journal of Climatology, 2001, 21, 1645-1668.	3.5	126
9	Autumn atmospheric response to the 2007 low Arctic sea ice extent in coupled ocean–atmosphere hindcasts. Climate Dynamics, 2012, 38, 2437-2448.	3.8	101
10	Modeling the temperature evolution of Svalbard permafrost during the 20th and 21st century. Cryosphere, 2011, 5, 67-79.	3.9	81
11	How often can we expect a record event?. Climate Research, 2003, 25, 3-13.	1.1	79
12	Impact of snow initialization on sub-seasonal forecasts. Climate Dynamics, 2013, 41, 1969-1982.	3.8	77
13	Exceptional warming over the Barents area. Scientific Reports, 2022, 12, .	3.3	73
14	Recent extreme nearâ€surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophysical Research Letters, 2007, 34, .	4.0	71
15	Empirical-statistical downscaling in climate modeling. Eos, 2004, 85, 417.	0.1	67
16	Climate change scenarios for northern Europe from multi-model IPCC AR4 climate simulations. Geophysical Research Letters, 2005, 32, .	4.0	62
17	Solar trends and global warming. Journal of Geophysical Research, 2009, 114, .	3.3	62
18	Empirically Downscaled Multimodel Ensemble Temperature and Precipitation Scenarios for Norway. Journal of Climate, 2002, 15, 3008-3027.	3.2	59

#	Article	IF	CITATIONS
19	Downscaling precipitation extremes. Theoretical and Applied Climatology, 2010, 100, 1-21.	2.8	59
20	On complex extremes: flood hazards and combined high spring-time precipitation and temperature in Norway. Climatic Change, 2007, 85, 381-406.	3.6	58
21	What Can Present Climate Models Tell Us about Climate Change?. Climatic Change, 2003, 59, 311-331.	3.6	53
22	Record-values, nonstationarity tests and extreme value distributions. Global and Planetary Change, 2004, 44, 11-26.	3.5	53
23	Spatially and temporally consistent prediction of heavy precipitation from mean values. Nature Climate Change, 2012, 2, 544-547.	18.8	53
24	Performance of CMIP3 and CMIP5 GCMs to Simulate Observed Rainfall Characteristics over the Western Himalayan Region. Journal of Climate, 2017, 30, 7777-7799.	3.2	53
25	Empirically downscaled temperature scenarios for northern Europe based on a multi-model ensemble. Climate Research, 2002, 21, 105-125.	1.1	53
26	An evaluation of statistical models for downscaling precipitation and their ability to capture long-term trends. International Journal of Climatology, 2007, 27, 649-665.	3.5	50
27	Assessment of climate change and associated impact on selected sectors in Poland. Acta Geophysica, 2018, 66, 1509-1523.	2.0	50
28	Use of observed temperature statistics in ranking <scp>CMIP5</scp> model performance over the Western Himalayan Region of India. International Journal of Climatology, 2018, 38, 554-570.	3.5	49
29	An improvement of analog model strategy for more reliable local climate change scenarios. Theoretical and Applied Climatology, 2005, 82, 245-255.	2.8	43
30	Learning from mistakes in climate research. Theoretical and Applied Climatology, 2016, 126, 699-703.	2.8	41
31	CHASE-PL Climate Projection dataset over Poland – bias adjustment of EURO-CORDEX simulations. Earth System Science Data, 2017, 9, 905-925.	9.9	40
32	Variations in Thermal Growing, Heating, and Freezing Indices in the Nordic Arctic, 1900–2050. Arctic, Antarctic, and Alpine Research, 2004, 36, 347-356.	1.1	38
33	Association between trends in daily rainfall percentiles and the global mean temperature. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,802.	3.3	36
34	Effect of Climate Change on Hydrology, Sediment and Nutrient Losses in Two Lowland Catchments in Poland. Water (Switzerland), 2017, 9, 156.	2.7	35
35	A New Global Set of Downscaled Temperature Scenarios. Journal of Climate, 2011, 24, 2080-2098.	3.2	34
36	Reconsidering the Quality and Utility of Downscaling. Journal of the Meteorological Society of Japan, 2016, 94A, 31-45.	1.8	34

#	Article	IF	CITATIONS
37	Can We Expect More Extreme Precipitation on the Monthly Time Scale?. Journal of Climate, 2006, 19, 630-637.	3.2	32
38	A mental picture of the greenhouse effect. Theoretical and Applied Climatology, 2017, 128, 679-688.	2.8	32
39	New vigour involving statisticians to overcome ensemble fatigue. Nature Climate Change, 2017, 7, 697-703.	18.8	31
40	Glacier mass balance in southern norway modelled by circulation indices and springâ€summer temperatures ad 1781–2000. Geografiska Annaler, Series A: Physical Geography, 2005, 87, 431-445.	1.5	30
41	A blind expert test of contrarian claims about climate data. Global Environmental Change, 2016, 39, 91-97.	7.8	30
42	GCMeval $\hat{a} \in$ An interactive tool for evaluation and selection of climate model ensembles. Climate Services, 2020, 18, 100167.	2.5	30
43	Tentative probabilistic temperature scenarios for northern Europe. Tellus, Series A: Dynamic Meteorology and Oceanography, 2004, 56, 89-101.	1.7	29
44	The cause of warming over Norway in the ECHAM4/OPYC3 GHG integration. International Journal of Climatology, 2001, 21, 371-387.	3.5	28
45	The use of a calculus-based cyclone identification method for generating storm statistics. Tellus, Series A: Dynamic Meteorology and Oceanography, 2006, 58, 473-486.	1.7	28
46	Climate change and projections for the Barents region: what is expected to change and what will stay the same?. Environmental Research Letters, 2016, 11, 054017.	5.2	28
47	Novel methods for inferring future changes in extreme rainfall over Northern Europe. Climate Research, 2007, 34, 195-210.	1.1	28
48	Observations of Supercooled Raindrops in New Mexico Summertime Cumuli. Journals of the Atmospheric Sciences, 1997, 54, 569-575.	1.7	26
49	The effect of El Niño on intraseasonal Kelvin waves. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 1277-1291.	2.7	25
50	Tentative probabilistic temperature scenarios for northern Europe. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 56, 89.	1.7	24
51	A review of the solar cycle length estimates. Geophysical Research Letters, 2005, 32, .	4.0	24
52	Subsampling Impact on the Climate Change Signal over Poland Based on Simulations from Statistical and Dynamical Downscaling. Journal of Applied Meteorology and Climatology, 2019, 58, 1061-1078.	1.5	24
53	Challenges to link climate change data provision and user needs: Perspective from the COSTâ€action VALUE. International Journal of Climatology, 2019, 39, 3704-3716.	3.5	23
54	On using principal components to represent stations in empirical–statistical downscaling. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 67, 28326.	1.7	22

#	Article	IF	CITATIONS
55	A simple equation to study changes in rainfall statistics. Environmental Research Letters, 2019, 14, 084017.	5.2	22
56	Expected future plague levels in a wildlife host under different scenarios of climate change. Global Change Biology, 2009, 15, 500-507.	9.5	20
57	Implications of a decrease in the precipitation area for the past and the future. Environmental Research Letters, 2018, 13, 044022.	5.2	19
58	A Hybrid Downscaling Approach for Future Temperature and Precipitation Change. Journal of Applied Meteorology and Climatology, 2020, 59, 1793-1807.	1.5	19
59	A strategy to effectively make use of large volumes of climate data for climate change adaptation. Climate Services, 2017, 6, 48-54.	2.5	18
60	An observational study of multiple cloud head structure in the fastex iop 16 cyclone. Atmospheric Science Letters, 2002, 3, 59-70.	1.9	16
61	A Simple Test for Changes in Statistical Distributions. Eos, 2008, 89, 389-390.	0.1	15
62	Specification of wet-day daily rainfall quantiles from the mean value. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 14981.	1.7	14
63	On downscaling probabilities for heavy 24-hour precipitation events at seasonal-to-decadal scales. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 67, 25954.	1.7	14
64	Is there a link between the unusually wet autumns in southeastern Norway and sea-surface temperature anomalies?. Climate Research, 2002, 23, 67-79.	1.1	14
65	Comment on "The phase relation between atmospheric carbon dioxide and global temperature― Global and Planetary Change, 2013, 106, 141-142.	3.5	13
66	Evaluation of Empirical Statistical Downscaling Models' Skill in Predicting Tanzanian Rainfall and Their Application in Providing Future Downscaled Scenarios. Journal of Climate, 2016, 29, 3231-3252.	3.2	13
67	Analysis of winter rainfall change statistics over the Western Himalaya: the influence of internal variability and topography. International Journal of Climatology, 2018, 38, e475.	3.5	13
68	The influence of subseasonal wind variability on tropical instability waves in the Pacific. Geophysical Research Letters, 2001, 28, 2041-2044.	4.0	11
69	Are there persistent physical atmospheric responses to galactic cosmic rays?. Environmental Research Letters, 2013, 8, 035049.	5.2	11
70	On tropical cyclone frequency and the warm pool area. Natural Hazards and Earth System Sciences, 2009, 9, 635-645.	3.6	11
71	Global hydro-climatological indicators and changes in the global hydrological cycle and rainfall patterns. , 2022, 1, e0000029.		10
72	Inconvenience versus Rationality: Reflections on Different Faces of Climate Contrarianism in Poland and Norway. Weather, Climate, and Society, 2018, 10, 821-836.	1.1	9

#	Article	IF	CITATIONS
73	Geographical Distribution of Thermometers Gives the Appearance of Lower Historical Global Warming. Geophysical Research Letters, 2019, 46, 7654-7662.	4.0	9
74	Testing a simple formula for calculating approximate intensity-duration-frequency curves. Environmental Research Letters, 2021, 16, 044009.	5.2	9
75	Statistical Projection of the North Atlantic Storm Tracks. Journal of Applied Meteorology and Climatology, 2019, 58, 1509-1522.	1.5	8
76	The Oslo temperature series 1837-2012: homogeneity testing and temperature analysis. International Journal of Climatology, 2015, 35, 3486-3504.	3.5	7
77	Low solar activity is blamed for winter chill over Europe. Environmental Research Letters, 2010, 5, 021001.	5.2	6
78	Sensitivity of summer 2-m temperature to sea ice conditions. Tellus, Series A: Dynamic Meteorology and Oceanography, 2011, 63, 324-337.	1.7	6
79	Are temperature trends affected by economic activity? Comment on McKitrick & Michaels (2004). Climate Research, 2004, 27, 171-173.	1.1	6
80	Downscaling probability of long heatwaves based on seasonal mean daily maximum temperatures. Advances in Statistical Climatology, Meteorology and Oceanography, 2018, 4, 37-52.	0.9	6
81	Climate Projections for Transportation Infrastructure Planning, Operations and Maintenance, and Design. Transportation Research Record, 2015, 2510, 90-97.	1.9	5
82	Projected Change—Models and Methodology. Regional Climate Studies, 2015, , 189-215.	1.2	5
83	Using statistical downscaling to assess skill of decadal predictions. Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 71, 1652882.	1.7	4
84	On latitudinal profiles of zonal means. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	3
85	Simple and approximate estimations of future precipitation return values. Natural Hazards and Earth System Sciences, 2017, 17, 993-1001.	3.6	3
86	Comment on "Discussions on common errors in analyzing sea level accelerations, solar trends and global warming" by Scafetta (2013) Pattern Recognition in Physics, 2013, 1, 91-92.	0.9	3
87	Solar activity and global sea-surface temperatures. Astronomy and Geophysics, 1999, 40, 3.14-3.17.	0.2	2
88	Atmospheric Composition Change. , 2012, , 309-365.		2
89	The use of regression for assessing a seasonal forecast model experiment. Earth System Dynamics, 2016, 7, 851-861.	7.1	2
90	Reconciliation of global temperatures. Environmental Research Letters, 2012, 7, 011002.	5.2	1

#	Article	IF	CITATIONS
91	Comment on: Akasofu, SI. On the Present Halting of Global Warming. Climate 2013, 1, 4–11. Climate, 2013, 1, 76-83.	2.8	1
92	Climate change projections of maximum temperature in the pre-monsoon season in Bangladesh using statistical downscaling of global climate models. Advances in Science and Research, 0, 18, 99-114.	1.0	1
93	Studying Statistical Methodology in Climate Research. Eos, 2014, 95, 129-129.	0.1	Ο