Khs Shaaban

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5252747/publications.pdf

Version: 2024-02-01

		66234	174990
98	3,701	42	52
papers	citations	h-index	g-index
108	108	108	562
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Physical, Radiation Shielding and Crystallization Properties of Na2O-Bi2O3- MoO3-B2O3- SiO2-Fe2O3 Glasses. Silicon, 2022, 14, 405-418.	1.8	46
2	Optical Properties of SiO2 – TiO2 – La2O3 – Na2O – Y2O3 Glasses and A Novel Process of Preparing the Parent Glass-Ceramics. Silicon, 2022, 14, 373-384.	1.8	32
3	Experimental and Simulation Investigations of Mechanical Properties and Gamma Radiation Shielding of Lithium Cadmium Gadolinium Silicate Glasses Doped Erbium Ions. Silicon, 2022, 14, 2905-2919.	1.8	30
4	Research on the Effects of Yttrium on Bismuth Titanate Borosilicate Glass System. Silicon, 2022, 14, 3419-3427.	1.8	50
5	Spectroscopic and Attenuation Shielding Studies on B2O3-SiO2-LiF- ZnO-TiO2 Glasses. Silicon, 2022, 14, 3091-3100.	1.8	61
6	Enhancement of Optical and Physical Parameters of Lead Zinc Silicate Glasses by Doping W+3 lons. Silicon, 2022, 14, 4915-4924.	1.8	28
7	Preparation and Characteristics of B2O3 – SiO2 – Bi2O3 – TiO2 – Y2O3 Glasses and Glass-Ceramics. Silicon, 2022, 14, 5277-5287.	1.8	35
8	The Impact of Y2O3 on Physical and Optical Characteristics, Polarizability, Optical Basicity, and Dispersion Parameters of B2O3 â€" SiO2 â€" Bi2O3 â€" TiO2 Glasses. Silicon, 2022, 14, 5057-5065.	1.8	47
9	Synthesis of Pb3O4-SiO2-ZnO-WO3 Glasses and their Fundamental Properties for Gamma Shielding Applications. Silicon, 2022, 14, 5661-5671.	1.8	38
10	A Study of Thermal, and Optical Properties of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5-x) LiF- x BaO Glasses. Silicon, 2022, 14, 6447-6455.	1.8	27
11	Mechanical and Thermodynamic Characteristics of 22SiO2- 23Bi2O3-37B2O3-13TiO2-(5-x) LiF- x BaO Glasses. Silicon, 2022, 14, 6457-6465.	1.8	38
12	FT-IR and Gamma Shielding Characteristics of 22SiO2-23Bi2O3-37B2O3-13TiO2-(5-x) LiF- x BaO Glasses. Silicon, 2022, 14, 7043-7051.	1.8	40
13	The impact of Fe2O3 on the dispersion parameters and gamma/fast neutron shielding characteristics of lithium borosilicate glasses. Optik, 2022, 249, 168259.	1.4	50
14	Significant impact of V2O5 content on lead phosphor-arsenate glasses for mechanical and radiation shielding applications. Radiation Physics and Chemistry, 2022, 193, 109956.	1.4	44
15	Crystallization and Radiation Proficiency of Transparent Sodium Silicate Glass Doped Zirconia. Silicon, 2022, 14, 8581-8597.	1.8	23
16	Investigation of BaO reinforced TiO ₂ –p ₂ O ₅ –li ₂ O glasses for optical and neutron shielding applications. RSC Advances, 2022, 12, 3036-3043.	1.7	40
17	A significant role of MoO3 on the optical, thermal, and radiation shielding characteristics of B2O3–P2O5–Li2O glasses. Optical and Quantum Electronics, 2022, 54, 1.	1.5	77
18	Gamma-ray shielding and mechanical characteristics of iron-doped lead phosphosilicate glasses. Silicon, 2022, 14, 8971-8979.	1.8	32

#	Article	IF	Citations
19	Physical, optical, and advanced radiation absorption characteristics of cadmium lead phosphate glasses containing MoO3. Journal of Materials Science: Materials in Electronics, 2022, 33, 3297-3305.	1.1	23
20	Physical, Mechanical, and Thermal Characteristics of B2O3 - SiO2- Li2O -Fe2O3ÂGlasses. Silicon, 2022, 14, 9609-9616.	1.8	7
21	Physical, optical, and radiation characteristics of bioactive glasses for dental prosthetics and orthopaedic implants applications. Radiation Physics and Chemistry, 2022, 193, 109995.	1.4	31
22	Cr2O3 effect on the structure, optical, and radiation shielding properties of Na2B4O7–SiO2–CaO–Cr2O3 glasses. Applied Physics A: Materials Science and Processing, 2022, 128, .	1.1	17
23	The Impact of Cr2O3 on the Mechanical, Physical, and Radiation Shielding Characteristics of Na2B4O7–CaO–SiO2 Glasses. Silicon, 2022, 14, 10375-10382.	1.8	28
24	Gamma Radiation Shielding and Mechanical Studies on Highly Dense Lithium Iron Borosilicate Glasses Modified by Zinc Oxide. Silicon, 2022, 14, 10391-10399.	1.8	19
25	Chemical Composition, Mechanical, and Thermal Characteristics of Bioactive Glass for Better Processing Features. Silicon, 2022, 14, 10817-10826.	1.8	18
26	Fabrication of lithium borosilicate glasses containing Fe2O3 and ZnO for FT-IR, UV–Vis–NIR, DTA, and highly efficient shield. Applied Physics A: Materials Science and Processing, 2022, 128, 1.	1.1	22
27	Physical, Optical, and Radiation Shielding Features of Yttrium Lithium Borate Glasses. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 2873-2881.	1.9	24
28	Thermal, optical, and gamma/ neutron radiation absorption of PbO - P2O5 –SiO2 - Na2O - Fe2O3 glasses. Journal of Materials Research and Technology, 2022, 18, 1909-1921.	2.6	11
29	Effect of Fe2O3 as an Aggregate Replacement on Mechanical, and Gamma/ Neutron Radiation Shielding Properties of Phosphoaluminate Glasses. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3117-3127.	1.9	23
30	Basicity, Electronegativity, Optical Parameters and Radiation Attenuation Characteristics of P2O5-As2O3-PbO Glasses Doped Vanadium Ions. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 3983-3996.	1.9	15
31	Radiation, Crystallization, and Physical Properties of Cadmium Borate Glasses. Silicon, 2021, 13, 2289-2307.	1.8	48
32	Comparative Studies on Polarizability, Optical Basicity and Optical Properties of Lead Borosilicate Modified with Titania. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 138-150.	1.9	44
33	Spectroscopic, Structural, Thermal, and Mechanical Properties of B2O3-CeO2-PbO2 Glasses. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1774-1786.	1.9	51
34	Lithium cadmium phosphate glasses doped Sm3+ as a host material for near-IR laser applications. Optical Materials, 2021, 111, 110638.	1.7	46
35	Structural and Mechanical Properties of Lithium Bismuth Borate Glasses Containing Molybdenum (LBBM) Together with their Glass–Ceramics. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 1057-1065.	1.9	52
36	Influence of La2O3 content on the structural, mechanical, and radiation-shielding properties of sodium fluoro lead barium borate glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 4651-4671.	1.1	55

#	Article	IF	CITATIONS
37	Synthesis, structure, mechanical and radiation shielding features of 50SiO2–(48 + X) Na2B4O7–(2â MnO2 glasses. European Physical Journal Plus, 2021, 136, 1.	€‰a^'a€% 1.2	6 ₄ X)
38	Structural, Elastic Moduli, and Radiation Shielding of SiO2-TiO2-La2O3-Na2O Glasses Containing Y2O3. Journal of Materials Engineering and Performance, 2021, 30, 1872-1884.	1.2	54
39	Novel borosilicate glass system: Na2B4O7-SiO2-MnO2: Synthesis, average electronics polarizability, optical basicity, and gamma-ray shielding features. Journal of Non-Crystalline Solids, 2021, 553, 120509.	1.5	48
40	Enhancement of spectroscopic parameters of Er3+-doped cadmium lithium gadolinium silicate glasses as an active medium for lasers and optical amplifiers in the NIR-region. Solid State Sciences, 2021, 113, 106539.	1.5	37
41	Optical, thermal and radiation shielding properties of B2O3–NaF–PbO–BaO–La2O3 glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 26034-26048.	1.1	57
42	Dispersion Parameters, Polarizability, and Basicity of Lithium Phosphate Glasses. Journal of Electronic Materials, 2021, 50, 3116-3128.	1.0	43
43	Structural and radiation shielding simulation of B2O3–SiO2–LiF–ZnO–TiO2 glasses. Journal of Materials Science: Materials in Electronics, 2021, 32, 16182-16193.	1.1	13
44	Comparative Studies on Spectroscopic and Crystallization Properties of Al2O3 -Li2O- B2O3-TiO2 Glasses. Brazilian Journal of Physics, 2021, 51, 1237-1248.	0.7	39
45	Synthesis, FTIR, and neutron/charged particle transmission properties of Pb3O4–SiO2–ZnO–WO3 glass system. Ceramics International, 2021, 47, 17322-17330.	2.3	69
46	Structural, mechanical, and nuclear radiation shielding properties of iron aluminoleadborate glasses. European Physical Journal Plus, 2021, $136,1.$	1.2	18
47	Electronegativity and optical basicity of glasses containing Na/Pb/B and their high performance for radiation applications: role of ZrO2 nanoparticles. European Physical Journal Plus, 2021, 136, 1.	1.2	26
48	Optical and spectroscopic study of Nd2O3-doped SBN glass in the near-infrared, visible and UV regions under pumping up-conversion emissions. European Physical Journal Plus, 2021, 136, 1.	1.2	17
49	The effect of ZrO2 on the linear and non-linear optical properties of sodium silicate glass. Optical and Quantum Electronics, 2021, 53, 1.	1.5	24
50	Significant influence of MoO3 content on synthesis, mechanical, and radiation shielding properties of B2O3-Pb3O4-Al2O3 glasses. Journal of Alloys and Compounds, 2021, 882, 160625.	2.8	76
51	Effect of Fe2O3 doping on structural, FTIR and radiation shielding characteristics of aluminium-lead-borate glasses. Progress in Nuclear Energy, 2021, 141, 103931.	1.3	56
52	Structural, thermal, and mechanical characteristics of yttrium lithium borate glasses and glass–ceramics. Journal of Materials Science: Materials in Electronics, 2021, 32, 28065-28075.	1.1	17
53	Mössbauer and differential thermal analysis studies of iron alkali lead-phosphate glasses. Physica Scripta, 2021, 96, 025706.	1.2	1
54	Structural and optical features of aluminum lead borate glass doped with Fe2O3. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	30

#	Article	IF	CITATIONS
55	Study of the influence of MoO ₃ concentration on the chemical structure, physical properties, and radiation absorption prowess of alumino lead borate glasses. Physica Scripta, 2021, 96, 125325.	1.2	4
56	Investigation of mechanical and radiation shielding characteristics of novel glass systems with the composition xNiO-20ZnO-60B2O3-(20-x) CdO based on nanometal oxides. Journal of Non-Crystalline Solids, 2020, 528, 119754.	1.5	76
57	Electronic Polarizability, Optical Basicity, Thermal, Mechanical and Optical Investigations of (65B2O3–30Li2O–5Al2O3) Glasses Doped with Titanate. Journal of Electronic Materials, 2020, 49, 2040-2049.	1.0	52
58	Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics. Optik, 2020, 203, 163976.	1.4	59
59	Gamma rays interactions with CdO-doped lead silicate glasses. Optical and Quantum Electronics, 2020, 52, 1.	1.5	14
60	Enhancement of optical and mechanical properties of sodium silicate glasses using zirconia. Optical and Quantum Electronics, 2020, 52, 1.	1.5	47
61	Mechanical and radiation-shielding properties of B2O3–P2O5–Li2O–MoO3 glasses. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	65
62	Investigation of Crystallization and Mechanical Characteristics of Glass and Glass-Ceramic with the Compositions xFe2O3-35SiO2-35B2O3-10Al2O3-(20â^'x) Na2O. Journal of Materials Engineering and Performance, 2020, 29, 4549-4558.	1.2	49
63	Visible and mid-infrared spectral emissions and radiative rates calculations of Tm3+ doped BBLC glass. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 242, 118774.	2.0	50
64	Mechanical, Structural and Crystallization Properties in Titanate Doped Phosphate Glasses. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4655-4663.	1.9	62
65	Structural and Optical Study of CoO Doping in Borophosphate Host Glass and Effect of Gamma Irradiation. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 5042-5052.	1.9	49
66	Spectroscopic Properties, Electronic Polarizability, and Optical Basicity of Titanium–Cadmium Tellurite Glasses Doped with Different Amounts of Lanthanum. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 4999-5008.	1.9	47
67	Electronic polarizability, optical basicity and mechanical properties of aluminum lead phosphate glasses. Optical and Quantum Electronics, 2020, 52, 1.	1.5	50
68	Judd–Ofelt analysis and physical properties of erbium modified cadmium lithium gadolinium silicate glasses. Journal of Materials Science: Materials in Electronics, 2020, 31, 4986-4996.	1.1	49
69	Investigation of gamma and neutron shielding parameters for borosilicate glasses doped europium oxide for the immobilization of radioactive waste. Journal of Materials Science: Materials in Electronics, 2020, 31, 6963-6976.	1.1	77
70	The Effect of TiO2 on the Optical and Mechanical Properties of Heavy Metal Oxide Borosilicate Glasses. Silicon, 2019, 11, 1253-1260.	1.8	29
71	Fabrication and Characterization of Glass and Glass-Ceramic from Cement Dust and Limestone Dust. Silicon, 2019, 11, 807-815.	1.8	3
72	Gamma ray shielding and structural properties of iron alkali alumino-phosphate glasses modified by PbO. Radiation Physics and Chemistry, 2019, 165, 108403.	1.4	51

#	Article	IF	Citations
73	Preparation and characterization of Li2B4O7 – TiO2 – SiO2 glasses doped with metal-organic framework derived nano-porous Cr2O3. Journal of Non-Crystalline Solids, 2019, 508, 51-61.	1.5	20
74	Study of the TiO2 effect on the heavy metals oxides borosilicate glasses structure using gamma-ray spectroscopy and positron annihilation technique. Radiation Physics and Chemistry, 2019, 164, 108345.	1.4	30
75	Investigation of structural and radiation shielding properties of 40B2O3–30PbO–(30-x) BaO-x ZnO glass system. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	63
76	Optical, Infrared Spectral and Mechanical Investigations of CeO2-Doped Borosilicate Glasses Containing Bi2O3 and TeO2. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 1680-1687.	1,9	10
77	Radiation shielding and physical properties of lead borate glass-doped ZrO2 nanoparticles. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	53
78	Optical properties and radiative rates of Nd3+ doped zinc-sodium phosphate glasses. Journal of Rare Earths, 2019, 37, 253-259.	2.5	53
79	Synthesis, Mechanical and Optical Features of Dy2O3 Doped Lead Alkali Borosilicate Glasses. Silicon, 2019, 11, 1853-1861.	1.8	9
80	Synthesis and Physical Characteristics of New Glasses from Some Environmental Wastes. Silicon, 2019, 11, 2445-2453.	1.8	4
81	Physical and Structural Properties of Lithium Borate Glasses Containing MoO3. Silicon, 2019, 11, 2421-2428.	1.8	55
82	Structural Analyses of Halide Alkali Lead Borate Glasses. Silicon, 2019, 11, 2413-2419.	1.8	2
83	Effects of SnO ₂ on spectroscopic properties of borosilicate glasses before and after plasma treatment and its mechanical properties. Materials Research Express, 2018, 5, 025207.	0.8	48
84	Spectroscopic properties and Judd-Ofelt analysis of Dy3+ ions in molybdenum borosilicate glasses. Journal of Luminescence, 2018, 196, 477-484.	1.5	46
85	Attenuation-density anomalous relationship of lead alkali borosilicate glasses. Radiation Physics and Chemistry, 2018, 150, 182-188.	1.4	42
86	Investigations of radiation shielding using Monte Carlo method and elastic properties of PbO-SiO2-B2O3-Na2O glasses. Current Applied Physics, 2018, 18, 717-727.	1,1	118
87	Some Physical Features of Glasses Synthesized from Some Environmental Wastes. Silicon, 2018, 10, 431-438.	1.8	4
88	Mechanical and Thermal Properties of Lead Borate Glasses Containing CaO and NaF. Silicon, 2018, 10, 1973-1978.	1.8	15
89	Physical properties of pseudo quaternary Na2B4O7 – SiO2 – MoO3 – Dy2O3 glasses. Ceramics International, 2018, 44, 3862-3867.	2.3	30
90	Study of the optical properties of amorphous As–Se–S thin films. Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1,1	11

#	Article	IF	CITATION
91	Physical characterization of As-Se-S glasses. Materials Research Express, 2018, 5, 065208.	0.8	15
92	Elastic, optical and structural features of wide range of CdO- Na ₂ 8 ₄ O ₇ glasses. Materials Research Express, 2018, 5, 065204.	0.8	22
93	Physical properties of B2O3–TeO2–Bi2O3 glass system. Journal of Non-Crystalline Solids, 2018, 498, 82-88.	1.5	46
94	Optical characterizations and Judd-Ofelt analysis of Dy3+ doped borosilicate glasses. Optical Materials, 2017, 72, 169-176.	1.7	55
95	Effect of MoO3 Content on Structural, Thermal, Mechanical and Optical Properties of (B2O3-SiO2-Bi2O3-Na2O-Fe2O3) Glass System. Silicon, 2017, 9, 785-793.	1.8	41
96	Studying effect of MoO3 on elastic and crystallization behavior of lithium diborate glasses. Applied Physics A: Materials Science and Processing, 2017, 123, 1.	1.1	57
97	Fabrication and physical characteristics of new glasses from wastes of limestone and phosphorite rocks. Bulletin of Materials Science, 2016, 39, 1791-1799.	0.8	8
98	Optical and structural evaluation of bismuth alumina-borate glasses doped with different amounts of (Y 2 O 3). Journal of Non-Crystalline Solids, 2016, 454, 13-18.	1.5	65