Yan-Qing Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5252551/publications.pdf

Version: 2024-02-01

1040056 888059 21 281 9 17 citations h-index g-index papers 21 21 21 490 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Implanted cobalt ions in two zinc-based frameworks: Improved electrocatalyst for hydrogen evolution reaction. Chemical Engineering Journal, 2022, 427, 130952.	12.7	11
2	Structural regulation of Co-based coordination polymers by adjusting solvent polarity toward electrocatalytic hydrogen evolution performance. New Journal of Chemistry, 2022, 46, 7355-7365.	2.8	2
3	Improved the Electrocatalytic Hydrogen Evolution Performances of Co-MOF Derivatives Through Introducing Zinc Ions by Two Ways. Energy & Energy & 2022, 36, 5843-5851.	5.1	4
4	Luminescent sensing for amino acids with a Cd-MOF based on 4'-(1H-tetrazol-5-yl)-biphenyl-4-carboxylic acid. Journal of Coordination Chemistry, 2021, 74, 630-636.	2.2	2
5	Fluorene-terminated hole transporting materials with a spiro[fluorene-9,9′-xanthene] core for perovskite solar cells. New Journal of Chemistry, 2021, 45, 5497-5502.	2.8	7
6	Influence of dimethoxytriphenylamine groups on carbazole-based hole transporting materials for perovskite solar cells. Solar Energy, 2019, 190, 361-366.	6.1	12
7	Yttrium-doped TiO2 compact layers for efficient perovskite solar cells. Journal of Solid State Chemistry, 2019, 275, 206-209.	2.9	18
8	Soluble tetra-methoxyltriphenylamine substituted zinc phthalocyanine as dopant-free hole transporting materials for perovskite solar cells. Organic Electronics, 2019, 69, 248-254.	2.6	22
9	Simply designed nonspiro fluorene-based hole-transporting materials for high performance perovskite solar cells. Synthetic Metals, 2019, 250, 42-48.	3.9	11
10	420 nm thick ${m{CH}}_{3}{m{NH}}_{3}{m{Pbl}}_{3-{x}}{m{Br}}_{{x}}$ capping layers for efficient TiO 2 nanorod array perovskite solar cells. Chinese Physics B, 2018, 27, 018804.$	1.4	3
11	Highâ€erystallinity and largeâ€grain CH ₃ NH ₃ Pbl ₃ thin films for efficient TiO ₂ nanorod array perovskite solar cells. Micro and Nano Letters, 2018, 13, 131-134.	1.3	3
12	Y-doping TiO2 nanorod arrays for efficient perovskite solar cells. Superlattices and Microstructures, 2018, 117, 283-287.	3.1	18
13	Br-Doping CH ₃ NH ₃ Pbl _{3â^'<i>x</i>} Br <i>_x</i> for Efficient TiO ₂ Nanorod Array Perovskite Solar Cells. Journal of Nanoscience and Nanotechnology, 2018, 18, 5095-5100.	0.9	2
14	Nb-Doping TiO ₂ Electron Transporting Layer for Efficient Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 2576-2581.	5.1	26
15	Photodegradation of Some Organic Dyes over Two Metal–Organic Frameworks with Especially High Efficiency for Safranine T. Crystal Growth and Design, 2017, 17, 1293-1298.	3.0	75
16	Ligands Entrapment in a 2D Parallel Stacked Co Complex with Mixed Ligands. Crystallography Reports, 2017, 62, 1177-1181.	0.6	0
17	Preparation of ultra-thin and high-quality WO3 compact layers and comparision of WO3 and TiO2 compact layer thickness in planar perovskite solar cells. Journal of Solid State Chemistry, 2016, 238, 223-228.	2.9	50
18	Preparation of ZnO nanorod arrays by hydrothermal procedure and its application in perovskite solar cells. Materials Research Innovations, 2016, 20, 338-342.	2.3	6

#	Article	IF	CITATIONS
19	Synthesis and structure of a 2D Zn complex with mixed ligands stacked in offset ABAB manner. Crystallography Reports, 2016, 61, 616-619.	0.6	0
20	Preparation of 596Ânm-thick and full-coverage CH3NH3Pbl3â^'xBrx thin films using 1.9ÂM Pbl2·NMP complex solution in DMF. Superlattices and Microstructures, 2016, 100, 179-184.	3.1	9
21	Organic-Inorganic Hybrid Perovskite Solar Cells Processed with Br or Cl Doping <i>via</i> a Two-Step Deposition. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2016, 32, 2724-2730.	4.9	0