Francesco Tornabene

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5252279/publications.pdf Version: 2024-02-01

		16451	33894
205	11,964	64	99
papers	citations	h-index	g-index
215	215	215	2402
all docs	docs citations	times ranked	citing authors
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Effects of surface energy and surface residual stresses on vibro-thermal analysis of chiral, zigzag, and armchair types of SWCNTs using refined beam theory. Mechanics Based Design of Structures and Machines, 2022, 50, 1565-1579.	4.7	21
2	Bending analysis of functionally graded porous nanocomposite beams based on a non-local strain gradient theory. Mathematics and Mechanics of Solids, 2022, 27, 66-92.	2.4	16
3	Generalized higher order layerwise theory for the dynamic study of anisotropic doubly -curved shells with a mapped geometry. Engineering Analysis With Boundary Elements, 2022, 134, 147-183.	3.7	30
4	Nonlinear dynamic analysis of FC/SMA/FG sandwich cylindrical shells using HSDT and semi ANS functions. Thin-Walled Structures, 2022, 171, 108702.	5.3	19
5	Multi thermal waves in a thermo diffusive piezo electric functionally graded rod via refined multi-dual phase-lag model. Curved and Layered Structures, 2022, 9, 105-115.	1.3	4
6	Nonlinear thermomechanical analysis of CNTRC cylindrical shells using HSDT enriched by zig-zag and polyconvex strain cover functions. Thin-Walled Structures, 2022, 172, 108918.	5.3	9
7	Linear and nonlinear mechanical responses of FG-GPLRC plates using a novel strain-based formulation of modified FSDT theory. International Journal of Non-Linear Mechanics, 2022, 140, 103923.	2.6	16
8	Higher-order modeling of anisogrid lattice shell structures with complex geometries. AIP Conference Proceedings, 2022, , .	0.4	0
9	Nonlocal vibration of functionally graded nanoplates using a layerwise theory. Mathematics and Mechanics of Solids, 2022, 27, 2634-2661.	2.4	16
10	Equivalent single layer higher order theory based on a weak formulation for the dynamic analysis of anisotropic doubly-curved shells with arbitrary geometry and variable thickness. Thin-Walled Structures, 2022, 174, 109119.	5.3	22
11	Dispersion of Elastic Waves in Functionally Graded CNTs-Reinforced Composite Beams. Applied Sciences (Switzerland), 2022, 12, 3852.	2.5	12
12	Transient Thermal Stresses in FG Porous Rotating Truncated Cones Reinforced by Graphene Platelets. Applied Sciences (Switzerland), 2022, 12, 3932.	2.5	18
13	Structural Analysis of Doubly-Curved Shells with General Boundary Conditions. Advanced Structured Materials, 2022, , 591-655.	0.5	1
14	Special Issue on Recent Advances in Theoretical and Computational Modeling of Composite Materials and Structures. Applied Sciences (Switzerland), 2022, 12, 4715.	2.5	0
15	Static analysis of anisotropic doubly-curved shells with arbitrary geometry and variable thickness resting on a Winkler-Pasternak support and subjected to general loads. Engineering Analysis With Boundary Elements, 2022, 140, 618-673.	3.7	23
16	Higher order theories for the free vibration analysis of laminated anisotropic doubly-curved shells of arbitrary geometry with general boundary conditions. Composite Structures, 2022, 297, 115740.	5.8	17
17	Special Issue on Advanced Mechanical Modeling of Nanomaterials and Nanostructures. Nanomaterials, 2022, 12, 2291.	4.1	1
18	Nonlinear thermomechanical analysis of GPLRC cylindrical shells using HSDT enriched by quasi-3D ANS cover functions. Thin-Walled Structures, 2022, 179, 109582.	5.3	12

#	Article	IF	CITATIONS
19	Nonlocal elasticity analysis of moderately thick porous functionally graded plates in a hygro-thermal environment. Composite Structures, 2021, 255, 112925.	5.8	74
20	Hygrothermal modeling of the buckling behavior of sandwich plates with nanocomposite face sheets resting on a Pasternak foundation. Continuum Mechanics and Thermodynamics, 2021, 33, 911-932.	2.2	26
21	1D-Hierarchical Ritz and 2D-GDQ Formulations for the free vibration analysis of circular/elliptical cylindrical shells and beam structures. Composite Structures, 2021, 258, 113338.	5.8	32
22	Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory. Mechanics Based Design of Structures and Machines, 2021, 49, 581-595.	4.7	42
23	Nonlocal elasticity theory for lateral stability analysis of tapered thin-walled nanobeams with axially varying materials. Thin-Walled Structures, 2021, 159, 107268.	5.3	32
24	Special Issue on Advanced Theoretical and Computational Methods for Complex Materials and Structures. Applied Sciences (Switzerland), 2021, 11, 2532.	2.5	1
25	Buckling Analysis of CNTRC Curved Sandwich Nanobeams in Thermal Environment. Applied Sciences (Switzerland), 2021, 11, 3250.	2.5	19
26	Nonlocal Analysis of the Flexural–Torsional Stability for FG Tapered Thin-Walled Beam-Columns. Nanomaterials, 2021, 11, 1936.	4.1	8
27	Higher order theories for the vibration study of doubly-curved anisotropic shells with a variable thickness and isogeometric mapped geometry. Composite Structures, 2021, 267, 113829.	5.8	60
28	Higher order formulations for doubly-curved shell structures with a honeycomb core. Thin-Walled Structures, 2021, 164, 107789.	5.3	45
29	Theoretical and Numerical Solution for the Bending and Frequency Response of Graphene Reinforced Nanocomposite Rectangular Plates. Applied Sciences (Switzerland), 2021, 11, 6331.	2.5	22
30	Free Vibration of Thin-Walled Composite Shell Structures Reinforced with Uniform and Linear Carbon Nanotubes: Effect of the Elastic Foundation and Nonlinearity. Nanomaterials, 2021, 11, 2090.	4.1	19
31	Higher-order modeling of anisogrid composite lattice structures with complex geometries. Engineering Structures, 2021, 244, 112686.	5.3	36
32	Multi-step buckling optimization analysis of stiffened and unstiffened polymer matrix composite shells: A new experimentally validated method. Composite Structures, 2021, 273, 114280.	5.8	13
33	FEM/XFEM modeling of the 3D fracturing process in transversely isotropic geomaterials. Composite Structures, 2021, 276, 114502.	5.8	13
34	A 1D Ritz–Jacobi formulation for the modal analysis of 3D anisotropic laminated composite and soft-core sandwich beam structures through 2D polynomials. Thin-Walled Structures, 2021, 169, 108428.	5.3	1
35	Thermomechanical Buckling Analysis of the E&P-FGM Beams Integrated by Nanocomposite Supports Immersed in a Hygrothermal Environment. Molecules, 2021, 26, 6594.	3.8	5
36	Three-Dimensional Buckling Analysis of Functionally Graded Saturated Porous Rectangular Plates under Combined Loading Conditions. Applied Sciences (Switzerland), 2021, 11, 10434.	2.5	21

#	Article	IF	CITATIONS
37	Higher-Order Free Vibration Analysis of Porous Functionally Graded Plates. Journal of Composites Science, 2021, 5, 305.	3.0	16
38	Thermoelastic analysis of rotating multilayer FC-GPLRC truncated conical shells based on a coupled TDQM-NURBS scheme. Composite Structures, 2020, 235, 111707.	5.8	58
39	Meshfree radial point interpolation method for the vibration and buckling analysis of FC-GPLRC perforated plates under an in-plane loading. Engineering Structures, 2020, 221, 111000.	5.3	56
40	Quasi-3D Hyperbolic Shear Deformation Theory for the Free Vibration Study of Honeycomb Microplates with Graphene Nanoplatelets-Reinforced Epoxy Skins. Molecules, 2020, 25, 5085.	3.8	27
41	Nonlocal Torsional Vibration of Elliptical Nanorods with Different Boundary Conditions. Vibration, 2020, 3, 189-203.	1.9	19
42	Nonlinear Vibration of Functionally Graded Graphene Nanoplatelets Polymer Nanocomposite Sandwich Beams. Applied Sciences (Switzerland), 2020, 10, 5669.	2.5	29
43	Nonlocal Elasticity Response of Doubly-Curved Nanoshells. Symmetry, 2020, 12, 466.	2.2	24
44	Exact analytical solutions to the problem of relative post-buckling stiffness of thin nonlocal graphene sheets. Thin-Walled Structures, 2020, 151, 106712.	5.3	9
45	A Modified Couple Stress Elasticity for Non-Uniform Composite Laminated Beams Based on the Ritz Formulation. Molecules, 2020, 25, 1404.	3.8	14
46	Buckling Behavior of FG-CNT Reinforced Composite Conical Shells Subjected to a Combined Loading. Nanomaterials, 2020, 10, 419.	4.1	52
47	Thermoelastic Analysis of Functionally Graded Cylindrical Panels with Piezoelectric Layers. Applied Sciences (Switzerland), 2020, 10, 1397.	2.5	24
48	Stress-driven nonlocal elasticity for the instability analysis of fluid-conveying C-BN hybrid-nanotube in a magneto-thermal environment. Physica Scripta, 2020, 95, 065204.	2.5	49
49	Numerical study of the mixed-mode behavior of generally-shaped composite interfaces. Composite Structures, 2020, 237, 111935.	5.8	22
50	Size-dependent hydroelastic vibration of FG microplates partially in contact with a fluid. Composite Structures, 2020, 244, 112320.	5.8	19
51	Nonlinear magneto-thermo-elastic vibration of mass sensor armchair carbon nanotube resting on an elastic substrate. Curved and Layered Structures, 2020, 7, 153-165.	1.3	11
52	Dynamic Stability of Bi-Directional Functionally Graded Porous Cylindrical Shells Embedded in an Elastic Foundation. Applied Sciences (Switzerland), 2020, 10, 1345.	2.5	27
53	Nonlocal Buckling Analysis of Composite Curved Beams Reinforced with Functionally Graded Carbon Nanotubes. Molecules, 2019, 24, 2750.	3.8	41
54	Free Vibration Analysis of Triclinic Nanobeams Based on the Differential Quadrature Method. Applied Sciences (Switzerland), 2019, 9, 3517.	2.5	18

FRANCESCO TORNABENE

#	Article	IF	CITATIONS
55	Buckling Behavior of Nanobeams Placed in Electromagnetic Field Using Shifted Chebyshev Polynomials-Based Rayleigh-Ritz Method. Nanomaterials, 2019, 9, 1326.	4.1	24
56	A novel fractional nonlocal model and its application in buckling analysis of Euler-Bernoulli nanobeam. Materials Research Express, 2019, 6, 055016.	1.6	23
57	Dynamical behavior of nanobeam embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using first-Order nonlocal strain gradient model. Materials Research Express, 2019, 6, 0850f2.	1.6	26
58	Electro-elastic response of cylindrical sandwich pressure vessels with porous core and piezoelectric face-sheets. Composite Structures, 2019, 225, 111119.	5.8	25
59	Thermal vibration analysis of SMA hybrid composite double curved sandwich panels. Composite Structures, 2019, 224, 111035.	5.8	43
60	Vibration characteristics of nanobeam with exponentially varying flexural rigidity resting on linearly varying elastic foundation using differential quadrature method. Materials Research Express, 2019, 6, 085051.	1.6	23
61	Size-Dependent Free Vibrations of FG Polymer Composite Curved Nanobeams Reinforced with Graphene Nanoplatelets Resting on Pasternak Foundations. Applied Sciences (Switzerland), 2019, 9, 1580.	2.5	49
62	Agglomeration effects on the vibrations of CNTs/fiber/polymer/metal hybrid laminates cylindrical shell. Composites Part B: Engineering, 2019, 167, 700-716.	12.0	81
63	On the critical speed evaluation of arbitrarily oriented rotating doubly-curved shells made of functionally graded materials. Thin-Walled Structures, 2019, 140, 85-98.	5.3	49
64	Application of plate decomposition technique in nonlinear and post-buckling analysis of functionally graded plates containing crack. Composite Structures, 2019, 220, 158-167.	5.8	14
65	Dynamic Stability of Temperature-Dependent Graphene Sheet Embedded in an Elastomeric Medium. Applied Sciences (Switzerland), 2019, 9, 887.	2.5	13
66	Scale Effects in Orthotropic Composite Assemblies as Micropolar Continua: A Comparison between Weak- and Strong-Form Finite Element Solutions. Materials, 2019, 12, 758.	2.9	28
67	Dynamic modeling of non-cylindrical curved viscoelastic single-walled carbon nanotubes based on the second gradient theory. Materials Research Express, 2019, 6, 075041.	1.6	31
68	Wave Propagation of Porous Nanoshells. Nanomaterials, 2019, 9, 22.	4.1	40
69	Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets. Composites Part B: Engineering, 2019, 166, 1-12.	12.0	88
70	Higher-Order Thermo-Elastic Analysis of FG-CNTRC Cylindrical Vessels Surrounded by a Pasternak Foundation. Nanomaterials, 2019, 9, 79.	4.1	35
71	Transient response of oscillated carbon nanotubes with an internal and external damping. Composites Part B: Engineering, 2019, 158, 198-205.	12.0	50
72	Multiscale approach for threeâ€phase CNT/polymer/fiber laminated nanocomposite structures. Polymer Composites, 2019, 40, E102.	4.6	126

5

#	Article	IF	CITATIONS
73	Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response. Journal of Sandwich Structures and Materials, 2019, 21, 320-365.	3.5	38
74	Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis. Engineering Analysis With Boundary Elements, 2019, 100, 24-47.	3.7	31
75	Strong Formulation: A Powerful Way for Solving Doubly Curved Shell Structures. Advanced Structured Materials, 2019, , 659-685.	0.5	0
76	Free vibration of FG-CNT reinforced composite skew cylindrical shells using the Chebyshev-Ritz formulation. Composites Part B: Engineering, 2018, 147, 169-177.	12.0	102
77	A numerical algorithm for computational modelling of coupled advection-diffusion-reaction systems. Engineering Computations, 2018, 35, 1383-1401.	1.4	14
78	3D capability of refined GDQ models for the bending analysis of composite and sandwich plates, spherical and doubly-curved shells. Thin-Walled Structures, 2018, 129, 94-124.	5.3	58
79	A semi-analytical investigation on geometric nonlinear and progressive damage behavior of relatively thick laminated plates under lateral pressure and end-shortening. Composite Structures, 2018, 194, 598-610.	5.8	14
80	Advanced GDQ models and 3D stress recovery in multilayered plates, spherical and double-curved panels subjected to transverse shear loads. Composites Part B: Engineering, 2018, 146, 244-269.	12.0	28
81	Mechanical behavior of damaged laminated composites plates and shells: Higher-order Shear Deformation Theories. Composite Structures, 2018, 189, 304-329.	5.8	38
82	A numerical study of the seismic response of arched and vaulted structures made of isotropic or composite materials. Engineering Structures, 2018, 159, 332-366.	5.3	20
83	Some Novel Numerical Applications of Cosserat Continua. International Journal of Computational Methods, 2018, 15, 1850054.	1.3	33
84	First-order shear deformation theory for orthotropic doubly-curved shells based on a modified couple stress elasticity. Aerospace Science and Technology, 2018, 73, 129-147.	4.8	39
85	Strong and weak formulations based on differential and integral quadrature methods for the free vibration analysis of composite plates and shells: Convergence and accuracy. Engineering Analysis With Boundary Elements, 2018, 92, 3-37.	3.7	64
86	Analytical and numerical modeling of the mixed-mode delamination process for composite moment-loaded double cantilever beams. Composite Structures, 2018, 187, 535-553.	5.8	40
87	Application of sinusoidal shear deformation theory and physical neutral surface to analysis of functionally graded piezoelectric plate. Composites Part B: Engineering, 2018, 151, 35-50.	12.0	42
88	Electromagnetic forced vibrations of composite nanoplates using nonlocal strain gradient theory. Materials Research Express, 2018, 5, 075031.	1.6	24
89	Structural response of porous FG nanobeams under hygro-thermo-mechanical loadings. Composites Part B: Engineering, 2018, 152, 71-78.	12.0	67
90	Free vibration study of composite conical panels reinforced with FG-CNTs. Engineering Structures, 2018, 172, 472-482.	5.3	89

#	Article	IF	CITATIONS
91	Dynamic stability of doubly-curved multilayered shells subjected to arbitrarily oriented angular velocities: Numerical evaluation of the critical speed. Composite Structures, 2018, 201, 1031-1055.	5.8	20
92	Free vibrations of functionally graded polymer composite nanoplates reinforced with graphene nanoplatelets. Aerospace Science and Technology, 2018, 81, 108-117.	4.8	167
93	Effect of Curvilinear Reinforcing Fibers on the Linear Static Behavior of Soft-Core Sandwich Structures. Journal of Composites Science, 2018, 2, 14.	3.0	9
94	On the Convergence of Laminated Composite Plates of Arbitrary Shape through Finite Element Models. Journal of Composites Science, 2018, 2, 16.	3.0	11
95	Numerical Study of the Mixed-Mode Delamination of Composite Specimens. Journal of Composites Science, 2018, 2, 30.	3.0	13
96	Nonlocal three-dimensional theory of elasticity for buckling behavior of functionally graded porous nanoplates using volume integrals. Materials Research Express, 2018, 5, 095006.	1.6	45
97	Effect of Sinusoidal Corrugated Geometries on the Vibrational Response of Viscoelastic Nanoplates. Applied Sciences (Switzerland), 2018, 8, 1432.	2.5	25
98	Damped forced vibration analysis of single-walled carbon nanotubes resting on viscoelastic foundation in thermal environment using nonlocal strain gradient theory. Engineering Science and Technology, an International Journal, 2018, 21, 778-786.	3.2	53
99	Thermo-resonance analysis of an excited graphene sheet using a new approach. International Journal of Engineering and Applied Sciences, 2018, 10, 190-206.	0.1	1
100	Interpretation of boundary conditions in the analytical and numerical shell solutions for mode analysis of multilayered structures. International Journal of Mechanical Sciences, 2017, 122, 18-28.	6.7	37
101	A posteriori stress and strain recovery procedure for the static analysis of laminated shells resting on nonlinear elastic foundation. Composites Part B: Engineering, 2017, 126, 162-191.	12.0	56
102	Static and free vibration analysis of functionally graded conical shells reinforced by carbon nanotubes. International Journal of Mechanical Sciences, 2017, 130, 383-398.	6.7	109
103	A new doubly-curved shell element for the free vibrations of arbitrarily shaped laminated structures based on Weak Formulation IsoGeometric Analysis. Composite Structures, 2017, 171, 429-461.	5.8	88
104	Geometrically nonâ€linear elastic model for a thin composite layer with wavy surfaces. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2017, 97, 1381-1392.	1.6	3
105	Mechanical behaviour of composite Cosserat solids in elastic problems with holes and discontinuities. Composite Structures, 2017, 179, 468-481.	5.8	16
106	Numerical computation of the crack development and SIF in composite materials with XFEM and SFEM. Composite Structures, 2017, 160, 468-490.	5.8	45
107	Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes. Composites Part B: Engineering, 2017, 115, 449-476.	12.0	148
108	Analytical and numerical investigation of the stiffness matrix for edgeâ€cracked circular shafts. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 391-411.	3.4	6

FRANCESCO TORNABENE

#	Article	IF	CITATIONS
109	Strong Formulation IsoGeometric Analysis for the vibration of thin membranes of general shape. International Journal of Mechanical Sciences, 2017, 120, 322-340.	6.7	25
110	Stability and accuracy of three Fourier expansionâ€based strong form finite elements for the free vibration analysis of laminated composite plates. International Journal for Numerical Methods in Engineering, 2017, 111, 354-382.	2.8	67
111	Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates. Composites Part B: Engineering, 2017, 115, 384-408.	12.0	202
112	Journal of Composites Science: A New Journal for Composite Materials, Structures and Experiments. Journal of Composites Science, 2017, 1, 1.	3.0	6
113	Linear Static Behavior of Damaged Laminated Composite Plates and Shells. Materials, 2017, 10, 811.	2.9	28
114	A Numerical Investigation on the Natural Frequencies of FGM Sandwich Shells with Variable Thickness by the Local Generalized Differential Quadrature Method. Applied Sciences (Switzerland), 2017, 7, 131.	2.5	81
115	An Equivalent Layer-Wise Approach for the Free Vibration Analysis of Thick and Thin Laminated and Sandwich Shells. Applied Sciences (Switzerland), 2017, 7, 17.	2.5	45
116	Thermal Buckling of Nanocomposite Stiffened Cylindrical Shells Reinforced by Functionally Graded Wavy Carbon Nanotubes with Temperature-Dependent Properties. Applied Sciences (Switzerland), 2017, 7, 1223.	2.5	55
117	Influence of Winkler-Pasternak Foundation on the Vibrational Behavior of Plates and Shells Reinforced by Agglomerated Carbon Nanotubes. Applied Sciences (Switzerland), 2017, 7, 1228.	2.5	69
118	Free Vibration Analysis of Functionally Graded Porous Doubly-Curved Shells Based on the First-Order Shear Deformation Theory. Applied Sciences (Switzerland), 2017, 7, 1252.	2.5	66
119	Finite Elements Based on Strong and Weak Formulations for Structural Mechanics: Stability, Accuracy and Reliability. International Journal of Engineering and Applied Sciences, 2017, 9, 1-1.	0.1	3
120	How to easily model doubly curved shells with variable radii of curvature. , 2017, , 177-180.		0
121	Boundary Conditions in 2D Numerical and 3D Exact Models for Cylindrical Bending Analysis of Functionally Graded Structures. Shock and Vibration, 2016, 2016, 1-17.	0.6	36
122	MLSDQ based on RBFs for the free vibrations of laminated composite doubly-curved shells. Composites Part B: Engineering, 2016, 99, 30-47.	12.0	74
123	Strain gauge analysis of implant-supported, screw-retained metal frameworks: Comparison between different manufacturing technologies. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2016, 230, 840-846.	1.8	8
124	Higher-order structural theories for the static analysis of doubly-curved laminated composite panels reinforced by curvilinear fibers. Thin-Walled Structures, 2016, 102, 222-245.	5.3	90
125	Strong Formulation Isogeometric Analysis (SFIGA) for laminated composite arbitrarily shaped plates. Composites Part B: Engineering, 2016, 96, 173-203.	12.0	88
126	A SFEM-based evaluation of mode-I Stress Intensity Factor in composite structures. Composite Structures, 2016, 145, 162-185.	5.8	50

#	Article	IF	CITATIONS
127	Innovative numerical methods based on SFEM and IGA for computing stress concentrations in isotropic plates with discontinuities. International Journal of Mechanical Sciences, 2016, 118, 166-187.	6.7	53
128	On the mechanics of laminated doubly-curved shells subjected to point and line loads. International Journal of Engineering Science, 2016, 109, 115-164.	5.0	68
129	2D and 3D shell models for the free vibration investigation of functionally graded cylindrical and spherical panels. Composite Structures, 2016, 154, 573-590.	5.8	74
130	Numerical study on the free vibration and thermal buckling behavior of moderately thick functionally graded structures in thermal environments. Composite Structures, 2016, 157, 207-221.	5.8	82
131	The GDQ method for the free vibration analysis of arbitrarily shaped laminated composite shells using a NURBS-based isogeometric approach. Composite Structures, 2016, 154, 190-218.	5.8	97
132	Transient dynamic response of generally-shaped arches based on a GDQ-time-stepping method. International Journal of Mechanical Sciences, 2016, 114, 277-314.	6.7	47
133	Four-parameter functionally graded cracked plates of arbitrary shape: A GDQFEM solution for free vibrations. Mechanics of Advanced Materials and Structures, 2016, 23, 89-107.	2.6	93
134	3D exact and 2D generalized differential quadrature models for free vibration analysis of functionally graded plates and cylinders. Meccanica, 2016, 51, 2059-2098.	2.0	70
135	Inter-laminar stress recovery procedure for doubly-curved, singly-curved, revolution shells with variable radii of curvature and plates using generalized higher-order theories and the local GDQ method. Mechanics of Advanced Materials and Structures, 2016, 23, 1019-1045.	2.6	49
136	Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Composites Part B: Engineering, 2016, 89, 187-218.	12.0	306
137	General higher-order layer-wise theory for free vibrations of doubly-curved laminated composite shells and panels. Mechanics of Advanced Materials and Structures, 2016, 23, 1046-1067.	2.6	76
138	The local GDQ method for the natural frequencies of doubly-curved shells with variable thickness: A general formulation. Composites Part B: Engineering, 2016, 92, 265-289.	12.0	82
139	Free vibration analysis of conical shells reinforced with agglomerated Carbon Nanotubes. International Journal of Mechanical Sciences, 2016, 108-109, 157-165.	6.7	158
140	Guest editorial ofMAMSspecial issue on: Applications of Unified Formulation and advanced theories using several numerical approaches. Mechanics of Advanced Materials and Structures, 2016, 23, 935-936.	2.6	0
141	Vibration analysis of variable thickness plates and shells by the Generalized Differential Quadrature method. Composite Structures, 2016, 156, 218-237.	5.8	97
142	Generalized stress–strain recovery formulation applied to functionally graded spherical shells and panels under static loading. Composite Structures, 2016, 156, 145-164.	5.8	32
143	Laminated Composite Doubly-Curved Shell Structures. Differential Geometry Higher-Order Structural Theories. Structural and Computational Mechanics Book Series, 2016, , .	0.4	4
144	Laminated Composite Doubly-Curved Shell Structures. Differential and Integral Quadrature Strong Formulation Finite Element Method. Structural and Computational Mechanics Book Series, 2016, , .	0.4	3

FRANCESCO TORNABENE

#	Article	IF	CITATIONS
145	Refined 2D and Exact 3D Shell Models for the Free Vibration Analysis of Single- and Double-Walled Carbon Nanotubes. Technologies, 2015, 3, 259-284.	5.1	25
146	Strong Formulation Finite Element Method Based on Differential Quadrature: A Survey. Applied Mechanics Reviews, 2015, 67, .	10.1	377
147	Accurate inter-laminar recovery for plates and doubly-curved shells with variable radii of curvature using layer-wise theories. Composite Structures, 2015, 124, 368-393.	5.8	81
148	Higher-order theories for the free vibrations of doubly-curved laminated panels with curvilinear reinforcing fibers by means of a local version of the GDQ method. Composites Part B: Engineering, 2015, 81, 196-230.	12.0	108
149	A new approach for treating concentrated loads in doubly-curved composite deep shells with variable radii of curvature. Composite Structures, 2015, 131, 433-452.	5.8	61
150	Dynamic analysis of thick and thin elliptic shell structures made of laminated composite materials. Composite Structures, 2015, 133, 278-299.	5.8	74
151	A parametric investigation of the seismic capacity for masonry arches and portals of different shapes. Engineering Failure Analysis, 2015, 52, 1-34.	4.0	62
152	Radial basis functions based on differential quadrature method for the free vibration analysis of laminated composite arbitrarily shaped plates. Composites Part B: Engineering, 2015, 78, 65-78.	12.0	74
153	Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method. Thin-Walled Structures, 2015, 97, 114-129.	5.3	92
154	Numerical and exact models for free vibration analysis of cylindrical and spherical shell panels. Composites Part B: Engineering, 2015, 81, 231-250.	12.0	84
155	An accurate one-dimensional theory for the dynamics of laminated composite curved beams. Journal of Sound and Vibration, 2015, 336, 96-105.	3.9	23
156	Stress and strain recovery for functionally graded free-form and doubly-curved sandwich shells using higher-order equivalent single layer theory. Composite Structures, 2015, 119, 67-89.	5.8	224
157	Strutture a Guscio in Materiale Composito. Geometria Differenziale. Teorie di Ordine Superiore. Structural and Computational Mechanics Book Series, 2015, , .	0.4	2
158	Strutture a Guscio in Materiale Composito. Quadratura Differenziale e Integrale Elementi Finiti in Forma Forte. Structural and Computational Mechanics Book Series, 2015, , .	0.4	2
159	The strong formulation finite element method: stability and accuracy. Frattura Ed Integrita Strutturale, 2014, 8, 251-265.	0.9	10
160	Static analysis of functionally graded conical shells and panels using the generalized unconstrained third order theory coupled with the stress recovery. Composite Structures, 2014, 112, 44-65.	5.8	123
161	The local GDQ method applied to general higher-order theories of doubly-curved laminated composite shells and panels: The free vibration analysis. Composite Structures, 2014, 116, 637-660.	5.8	119
162	Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories. Composites Part B: Engineering, 2014, 67, 490-509.	12.0	217

#	Article	IF	CITATIONS
163	A strong formulation finite element method (SFEM) based on RBF and GDQ techniques for the static and dynamic analyses of laminated plates of arbitrary shape. Meccanica, 2014, 49, 2503-2542.	2.0	89
164	Winkler–Pasternak foundation effect on the static and dynamic analyses of laminated doubly-curved and degenerate shells and panels. Composites Part B: Engineering, 2014, 57, 269-296.	12.0	139
165	Generalized Differential Quadrature Finite Element Method for vibration analysis of arbitrarily shaped membranes. International Journal of Mechanical Sciences, 2014, 79, 216-251.	6.7	92
166	Analysis of thick isotropic and cross-ply laminated plates by generalized differential quadrature method and a Unified Formulation. Composites Part B: Engineering, 2014, 58, 544-552.	12.0	112
167	Static analysis of doubly-curved anisotropic shells and panels using CUF approach, differential geometry and differential quadrature method. Composite Structures, 2014, 107, 675-697.	5.8	123
168	Strong formulation finite element method for arbitrarily shaped laminated plates - Part I. Theoretical analysis. Advances in Aircraft and Spacecraft Science, 2014, 1, 125-143.	0.5	30
169	Strong formulation finite element method for arbitrarily shaped laminated plates - Part II. Numerical analysis. Advances in Aircraft and Spacecraft Science, 2014, 1, 145-175.	0.5	14
170	Radial basis function method applied to doubly-curved laminated composite shells and panels with a General Higher-order Equivalent Single Layer formulation. Composites Part B: Engineering, 2013, 55, 642-659.	12.0	114
171	Generalized differential quadrature finite element method for cracked composite structures of arbitrary shape. Composite Structures, 2013, 106, 815-834.	5.8	102
172	Static analysis of completely doubly-curved laminated shells and panels using general higher-order shear deformation theories. Composite Structures, 2013, 101, 59-93.	5.8	144
173	General higher-order equivalent single layer theory for free vibrations of doubly-curved laminated composite shells and panels. Composite Structures, 2013, 104, 94-117.	5.8	178
174	Static analysis of functionally graded doubly-curved shells and panels of revolution. Meccanica, 2013, 48, 901-930.	2.0	168
175	General higher-order shear deformation theories for the free vibration analysis of completely doubly-curved laminated shells and panels. Composite Structures, 2013, 95, 639-666.	5.8	207
176	On mixed mode crack initiation and direction in shafts: Strain energy density factor and maximum tangential stress criteria. Engineering Fracture Mechanics, 2013, 109, 273-289.	4.3	21
177	Mixed Static and Dynamic Optimization of Four-Parameter Functionally Graded Completely Doubly Curved and Degenerate Shells and Panels Using GDQ Method. Mathematical Problems in Engineering, 2013, 2013, 1-33.	1.1	56
178	Analysis of Sandwich Plates by Generalized Differential Quadrature Method. Mathematical Problems in Engineering, 2013, 2013, 1-12.	1.1	53
179	Free-Form Laminated Doubly-Curved Shells and Panels of Revolution Resting on Winkler-Pasternak Elastic Foundations: A 2-D GDQ Solution for Static and Free Vibration Analysis. World Journal of Mechanics, 2013, 03, 1-25.	0.4	59
180	General anisotropic doubly-curved shell theory: A differential quadrature solution for free vibrations of shells and panels of revolution with a free-form meridian. Journal of Sound and Vibration, 2012, 331, 4848-4869.	3.9	86

#	Article	IF	CITATIONS
181	Laminated composite rectangular and annular plates: A GDQ solution for static analysis with a posteriori shear and normal stress recovery. Composites Part B: Engineering, 2012, 43, 1847-1872.	12.0	73
182	Static analysis of laminated composite curved shells and panels of revolution with a posteriori shear and normal stress recovery using generalized differential quadrature method. International Journal of Mechanical Sciences, 2012, 61, 71-87.	6.7	68
183	Free vibrations of anisotropic doubly-curved shells and panels of revolution with a free-form meridian resting on Winkler–Pasternak elastic foundations. Composite Structures, 2011, 94, 186-206.	5.8	106
184	2-D GDQ solution for free vibrations of anisotropic doubly-curved shells and panels of revolution. Composite Structures, 2011, 93, 1854-1876.	5.8	135
185	FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: A 2-D GDQ solution for free vibrations. International Journal of Mechanical Sciences, 2011, 53, 446-470.	6.7	166
186	Free vibration analysis of functionally graded panels and shells of revolution. Meccanica, 2009, 44, 255-281.	2.0	192
187	Free vibrations of three parameter functionally graded parabolic panels of revolution. Mechanics Research Communications, 2009, 36, 587-594.	1.8	115
188	2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical shell and annular plate structures. Journal of Sound and Vibration, 2009, 328, 259-290.	3.9	317
189	Free vibration analysis of functionally graded conical, cylindrical shell and annular plate structures with a four-parameter power-law distribution. Computer Methods in Applied Mechanics and Engineering, 2009, 198, 2911-2935.	6.6	472
190	Free vibrations of four-parameter functionally graded parabolic panels and shells of revolution. European Journal of Mechanics, A/Solids, 2009, 28, 991-1013.	3.7	171
191	Nonconservative stability problems via generalized differential quadrature method. Journal of Sound and Vibration, 2008, 315, 176-196.	3.9	68
192	Non-singular term effect on the fracture quantities of a crack in a piezoelectric medium. Engineering Fracture Mechanics, 2008, 75, 4542-4567.	4.3	8
193	2-D solution for free vibrations of parabolic shells using generalized differential quadrature method. European Journal of Mechanics, A/Solids, 2008, 27, 1001-1025.	3.7	134
194	General analysis and application to redundant arches under static loading. Construction and Building Materials, 2007, 21, 1129-1143.	7.2	8
195	Vibration analysis of spherical structural elements using the GDQ method. Computers and Mathematics With Applications, 2007, 53, 1538-1560.	2.7	113
196	Subsonic Griffith crack propagation in piezoelectric media. European Journal of Mechanics, A/Solids, 2007, 26, 442-459.	3.7	9
197	Analytical and numerical results for vibration analysis of multi-stepped and multi-damaged circular arches. Journal of Sound and Vibration, 2007, 299, 143-163.	3.9	88
198	Dynamical Analysis of Spherical Structural Elements Using the First-order Shear Deformation Theory. , 2007, , 17-41.		0

#	Article	IF	CITATIONS
199	Crack propagation in a four-parameter piezoelectric medium. European Journal of Mechanics, A/Solids, 2006, 25, 230-249.	3.7	10
200	Elastodynamic Degenerate States for a Crack in an Orthotropic Medium. Meccanica, 2006, 41, 363-373.	2.0	2
201	Crack propagation in an orthotropic medium with coupled elastodynamic properties. Mechanics Research Communications, 2005, 32, 153-159.	1.8	17
202	Stress and Strain Recovery of Laminated Composite Doubly-Curved Shells and Panels Using Higher-Order Formulations. Key Engineering Materials, 0, 624, 205-213.	0.4	13
203	Numerical Investigation of Composite Materials with Inclusions and Discontinuities. Key Engineering Materials, 0, 747, 69-76.	0.4	3
204	Nonlocal study of the vibration and stability response of smallâ€scale axially moving supported beams on viscoelasticâ€Pasternak foundation in a hygroâ€ŧhermal environment. Mathematical Methods in the Applied Sciences, 0, , .	2.3	26
205	Vibration analysis of shear deformable carbon nanotubesâ€based functionally graded conical shells resting on elastic foundations. Mathematical Methods in the Applied Sciences. 0	2.3	24