Peter Sterling

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5252/publications.pdf

Version: 2024-02-01

23567 39675 9,498 111 58 94 citations h-index g-index papers 113 113 113 5570 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Why Deaths of Despair Are Increasing in the US and Not Other Industrial Nations—Insights From Neuroscience and Anthropology. JAMA Psychiatry, 2022, 79, 368.	11.0	38
2	Peter Sterling. Current Biology, 2021, 31, R103-R106.	3.9	1
3	Why I joined the Freedom Rides. Current Biology, 2021, 31, R766-R770.	3.9	0
4	We are all mutts. Current Biology, 2020, 30, R1063-R1064.	3.9	0
5	Richard H. Masland (1942–2019). Neuron, 2020, 105, 411-412.	8.1	0
6	Allostasis: A Brain-Centered, Predictive Mode of Physiological Regulation. Trends in Neurosciences, 2019, 42, 740-752.	8.6	121
7	Predictive regulation and human design. ELife, 2018, 7, .	6.0	14
8	Homeostasis vs Allostasis. JAMA Psychiatry, 2014, 71, 1192.	11.0	67
9	Some Principles of Retinal Design: The Proctor Lecture. , 2013, 54, 2267.		11
			No. of the control of
10	Why Do Axons Differ in Caliber?. Journal of Neuroscience, 2012, 32, 626-638.	3.6	328
10	Why Do Axons Differ in Caliber?. Journal of Neuroscience, 2012, 32, 626-638. Allostasis: A model of predictive regulation. Physiology and Behavior, 2012, 106, 5-15.	3.6 2.1	328 617
11	Allostasis: A model of predictive regulation. Physiology and Behavior, 2012, 106, 5-15. Cone synapses in macaque fovea: I. Two types of non-S cones are distinguished by numbers of contacts	2.1	617
11 12	Allostasis: A model of predictive regulation. Physiology and Behavior, 2012, 106, 5-15. Cone synapses in macaque fovea: I. Two types of non-S cones are distinguished by numbers of contacts with OFF midget bipolar cells. Visual Neuroscience, 2011, 28, 3-16.	2.1	617
11 12 13	Allostasis: A model of predictive regulation. Physiology and Behavior, 2012, 106, 5-15. Cone synapses in macaque fovea: I. Two types of non-S cones are distinguished by numbers of contacts with OFF midget bipolar cells. Visual Neuroscience, 2011, 28, 3-16. Natural Images from the Birthplace of the Human Eye. PLoS ONE, 2011, 6, e20409. Cone synapses in macaque fovea: II. Dendrites of OFF midget bipolar cells exhibit Inner Densities similar to their Outer synaptic Densities in basal contacts with cone terminals. Visual Neuroscience, 2011, 28,	2.1 1.0 2.5	617 4 79
11 12 13 14	Allostasis: A model of predictive regulation. Physiology and Behavior, 2012, 106, 5-15. Cone synapses in macaque fovea: I. Two types of non-S cones are distinguished by numbers of contacts with OFF midget bipolar cells. Visual Neuroscience, 2011, 28, 3-16. Natural Images from the Birthplace of the Human Eye. PLoS ONE, 2011, 6, e20409. Cone synapses in macaque fovea: II. Dendrites of OFF midget bipolar cells exhibit Inner Densities similar to their Outer synaptic Densities in basal contacts with cone terminals. Visual Neuroscience, 2011, 28, 17-28. Retina is structured to process an excess of darkness in natural scenes. Proceedings of the National	2.1 1.0 2.5 1.0	617 4 79
11 12 13 14	Allostasis: A model of predictive regulation. Physiology and Behavior, 2012, 106, 5-15. Cone synapses in macaque fovea: I. Two types of non-S cones are distinguished by numbers of contacts with OFF midget bipolar cells. Visual Neuroscience, 2011, 28, 3-16. Natural Images from the Birthplace of the Human Eye. PLoS ONE, 2011, 6, e20409. Cone synapses in macaque fovea: II. Dendrites of OFF midget bipolar cells exhibit Inner Densities similar to their Outer synaptic Densities in basal contacts with cone terminals. Visual Neuroscience, 2011, 28, 17-28. Retina is structured to process an excess of darkness in natural scenes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17368-17373.	2.1 1.0 2.5 1.0	617 4 79 3

#	Article	IF	CITATIONS
19	Physiology and Morphology of Color-Opponent Ganglion Cells in a Retina Expressing a Dual Gradient of S and M Opsins. Journal of Neuroscience, 2009, 29, 2706-2724.	3.6	46
20	Receptive fields and functional architecture in the retina. Journal of Physiology, 2009, 587, 2753-2767.	2.9	116
21	Different types of ganglion cell share a synaptic pattern. Journal of Comparative Neurology, 2008, 507, 1871-1878.	1.6	27
22	Mobility and Turnover of Vesicles at the Synaptic Ribbon. Journal of Neuroscience, 2008, 28, 3150-3158.	3.6	40
23	Design of a Neuronal Array. Journal of Neuroscience, 2008, 28, 3178-3189.	3.6	132
24	Evidence That Vesicles Undergo Compound Fusion on the Synaptic Ribbon. Journal of Neuroscience, 2008, 28, 5403-5411.	3.6	93
25	How robust is a neural circuit?. Visual Neuroscience, 2007, 24, 563-571.	1.0	11
26	Synaptic Ca2+ in Darkness Is Lower in Rods than Cones, Causing Slower Tonic Release of Vesicles. Journal of Neuroscience, 2007, 27, 5033-5042.	3.6	39
27	Microcircuitry for Two Types of Achromatic Ganglion Cell in Primate Fovea. Journal of Neuroscience, 2007, 27, 2646-2653.	3.6	58
28	<i>Retinal Development</i> , edited by E. Sernagor, S. Eglen, W. Harris, and R. Wong. Visual Neuroscience, 2007, 24, 763-763.	1.0	0
29	How Much the Eye Tells the Brain. Current Biology, 2006, 16, 1428-1434.	3.9	193
30	Displaced GAD65 amacrine cells of the guinea pig retina are morphologically diverse. Visual Neuroscience, 2006, 23, 931-939.	1.0	19
31	Chromatic Properties of Horizontal and Ganglion Cell Responses Follow a Dual Gradient in Cone Opsin Expression. Journal of Neuroscience, 2006, 26, 12351-12361.	3.6	51
32	Sluggish and Brisk Ganglion Cells Detect Contrast With Similar Sensitivity. Journal of Neurophysiology, 2005, 93, 2388-2395.	1.8	16
33	Structure and function of ribbon synapses. Trends in Neurosciences, 2005, 28, 20-29.	8.6	304
34	Encoding Light Intensity by the Cone Photoreceptor Synapse. Neuron, 2005, 48, 555-562.	8.1	69
35	How Retinal Ganglion Cells Prevent Synaptic Noise From Reaching the Spike Output. Journal of Neurophysiology, 2004, 92, 2510-2519.	1.8	23
36	Visualizing Synaptic Ribbons in the Living Cell. Journal of Neuroscience, 2004, 24, 9752-9759.	3.6	135

#	Article	IF	CITATIONS
37	Evidence That Each S Cone in Macaque Fovea Drives One Narrow-Field and Several Wide-Field Blue-Yellow Ganglion Cells. Journal of Neuroscience, 2004, 24, 8366-8378.	3.6	26
38	A Retinal-Specific Regulator of G-Protein Signaling Interacts with GÂo and Accelerates an Expressed Metabotropic Glutamate Receptor 6 Cascade. Journal of Neuroscience, 2004, 24, 5684-5693.	3.6	52
39	Efficiency of Information Transmission by Retinal Ganglion Cells. Current Biology, 2004, 14, 1523-1530.	3.9	79
40	Evidence that certain retinal bipolar cells use both glutamate and GABA. Journal of Comparative Neurology, 2004, 478, 207-218.	1.6	42
41	Design for a Binary Synapse. Neuron, 2004, 41, 313-315.	8.1	5
42	Streamlined Synaptic Vesicle Cycle in Cone Photoreceptor Terminals. Neuron, 2004, 41, 755-766.	8.1	114
43	Matching neural morphology to molecular expression: Single cell injection following immunostaining. Journal of Neurocytology, 2003, 32, 245-251.	1.5	29
44	Two ribbon synaptic units in rod photoreceptors of macaque, human, and cat. Journal of Comparative Neurology, 2003, 455, 100-112.	1.6	46
45	Inner S-cone bipolar cells provide all of the central elements for S cones in macaque retina. Journal of Comparative Neurology, 2003, 457, 185-201.	1.6	46
46	Timing of Quantal Release from the Retinal Bipolar Terminal Is Regulated by a Feedback Circuit. Neuron, 2003, 38, 89-101.	8.1	43
47	Cell density ratios in a foveal patch in macaque retina. Visual Neuroscience, 2003, 20, 189-209.	1.0	85
48	Macaque Retina Contains an S-Cone OFF Midget Pathway. Journal of Neuroscience, 2003, 23, 9881-9887.	3.6	134
49	Endocytosis and Vesicle Recycling at a Ribbon Synapse. Journal of Neuroscience, 2003, 23, 4092-4099.	3.6	101
50	Contrast Threshold of a Brisk-Transient Ganglion Cell In Vitro. Journal of Neurophysiology, 2003, 89, 2360-2369.	1.8	38
51	cGMP modulates spike responses of retinal ganglion cells via a cGMP-gated current. Visual Neuroscience, 2002, 19, 373-380.	1.0	15
52	Needle from a Haystack. Neuron, 2002, 34, 670-672.	8.1	3
53	Light Response of Retinal ON Bipolar Cells Requires a Specific Splice Variant of Gα _o . Journal of Neuroscience, 2002, 22, 4878-4884.	3.6	116
54	Roles of ATP in Depletion and Replenishment of the Releasable Pool of Synaptic Vesicles. Journal of Neurophysiology, 2002, 88, 98-106.	1.8	84

#	Article	IF	CITATIONS
55	Electrical Coupling between Mammalian Cones. Current Biology, 2002, 12, 1900-1907.	3.9	139
56	How Müller glial cells in macaque fovea coat and isolate the synaptic terminals of cone photoreceptors. Journal of Comparative Neurology, 2002, 453, 100-111.	1.6	44
57	How neurons compute direction. Nature, 2002, 420, 375-376.	27.8	8
58	cGMP modulates spike responses of retinal ganglion cells via a cGMP-gated current. Visual Neuroscience, 2002, 19, 373-80.	1.0	7
59	Cellular Basis for the Response to Second-Order Motion Cues in Y Retinal Ganglion Cells. Neuron, 2001, 32, 711-721.	8.1	69
60	Bipolar Cells Contribute to Nonlinear Spatial Summation in the Brisk-Transient (Y) Ganglion Cell in Mammalian Retina. Journal of Neuroscience, 2001, 21, 7447-7454.	3.6	176
61	Microcircuits for Night Vision in Mouse Retina. Journal of Neuroscience, 2001, 21, 8616-8623.	3.6	300
62	Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. Journal of Comparative Neurology, 2000, 423, 402-412.	1.6	190
63	ECT damage is easy to find if you look for it. Nature, 2000, 403, 242-242.	27.8	27
64	The Light Response of ON Bipolar Neurons Requires Gα0. Journal of Neuroscience, 2000, 20, 9053-9058.	3.6	193
64	The Light Response of ON Bipolar Neurons Requires Gαo. Journal of Neuroscience, 2000, 20, 9053-9058. Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA. Journal of Neuroscience, 2000, 20, 7657-7663.	3.6	193
	Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses		
65	Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA. Journal of Neuroscience, 2000, 20, 7657-7663. Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field. Journal of	3.6	171
65	Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA. Journal of Neuroscience, 2000, 20, 7657-7663. Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field. Journal of Neuroscience, 1999, 19, 9756-9767. Localization of Type I Inositol 1,4,5-Triphosphate Receptor in the Outer Segments of Mammalian Cones.	3.6	171 165
65 66 67	Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA. Journal of Neuroscience, 2000, 20, 7657-7663. Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field. Journal of Neuroscience, 1999, 19, 9756-9767. Localization of Type I Inositol 1,4,5-Triphosphate Receptor in the Outer Segments of Mammalian Cones. Journal of Neuroscience, 1999, 19, 4221-4228. AMPA Receptor Activates a G-Protein that Suppresses a cGMP-Gated Current. Journal of Neuroscience,	3.6 3.6 3.6	171 165 27
65 66 67 68	Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA. Journal of Neuroscience, 2000, 20, 7657-7663. Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field. Journal of Neuroscience, 1999, 19, 9756-9767. Localization of Type I Inositol 1,4,5-Triphosphate Receptor in the Outer Segments of Mammalian Cones. Journal of Neuroscience, 1999, 19, 4221-4228. AMPA Receptor Activates a G-Protein that Suppresses a cGMP-Gated Current. Journal of Neuroscience, 1999, 19, 2954-2959.	3.6 3.6 3.6	171 165 27 65
65 66 67 68	Evidence That Different Cation Chloride Cotransporters in Retinal Neurons Allow Opposite Responses to GABA. Journal of Neuroscience, 2000, 20, 7657-7663. Functional Circuitry of the Retinal Ganglion Cell's Nonlinear Receptive Field. Journal of Neuroscience, 1999, 19, 9756-9767. Localization of Type I Inositol 1,4,5-Triphosphate Receptor in the Outer Segments of Mammalian Cones. Journal of Neuroscience, 1999, 19, 4221-4228. AMPA Receptor Activates a G-Protein that Suppresses a cGMP-Gated Current. Journal of Neuroscience, 1999, 19, 2954-2959. Deciphering the retina's wiring diagram. Nature Neuroscience, 1999, 2, 851-853. Evidence that Circuits for Spatial and Color Vision Segregate at the First Retinal Synapse. Neuron,	3.6 3.6 3.6 14.8	171 165 27 65

#	Article	lF	Citations
73	Neurochemistry of the mammalian cone `synaptic complex'. Vision Research, 1998, 38, 1359-1369.	1.4	92
74	Transmitter Concentration at a Three-Dimensional Synapse. Journal of Neurophysiology, 1998, 80, 3163-3172.	1.8	66
75	Microcircuitry and Mosaic of a Blue–Yellow Ganglion Cell in the Primate Retina. Journal of Neuroscience, 1998, 18, 3373-3385.	3.6	213
76	Evidence That Vesicles on the Synaptic Ribbon of Retinal Bipolar Neurons Can Be Rapidly Released. Neuron, 1996, 16, 1221-1227.	8.1	269
77	Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina. Nature, 1996, 381, 613-615.	27.8	98
78	Retinal neurons and vessels are not fractal but spaceâ€filling. Journal of Comparative Neurology, 1995, 361, 479-490.	1.6	89
79	Tuning retinal circuits. Nature, 1995, 377, 676-677.	27.8	30
80	Horizontal cells in cat and monkey retina express different isoforms of glutamic acid decarboxylase. Visual Neuroscience, 1994, 11, 135-142.	1.0	83
81	M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses. Nature, 1994, 371, 70-72.	27.8	183
82	Subcellular localization of GABAA receptor on bipolar cells in macaque and human retina. Vision Research, 1994, 34, 1235-1246.	1.4	86
83	Identification of a G-protein in depolarizing rod bipolar cells. Visual Neuroscience, 1993, 10, 473-478.	1.0	72
84	Gap junctions between the pedicles of macaque foveal cones. Vision Research, 1992, 32, 1809-1815.	1.4	100
85	Parallel Circuits from Cones to the On-Beta Ganglion Cell. European Journal of Neuroscience, 1992, 4, 506-520.	2.6	47
86	Immunoreactivity to GABAA receptor in the outer plexiform layer of the cat retina. Journal of Comparative Neurology, 1992, 320, 394-397.	1.6	71
87	The retina. An approachable part of the brain. Cell, 1988, 53, 175-176.	28.9	0
88	Microcircuitry of the -beta ganglion cell in daylight, twilight, and starlight. Neuroscience Research Supplement: the Official Journal of the Japan Neuroscience Society, 1987, 6, S269-S285.	0.0	13
89	Ultrastructure of synapses from the A-laminae of the lateral geniculate nucleus in layer IV of the cat striate cortex. Journal of Comparative Neurology, 1987, 260, 63-75.	1.6	24
90	Pattern of lateral geniculate synapses on neuron somata in layer IV of the cat striate cortex. Journal of Comparative Neurology, 1987, 260, 76-86.	1.6	15

#	Article	IF	Citations
91	Rod bipolar array in the cat retina: Pattern of input from rods and GABA-accumulating amacrine cells. Journal of Comparative Neurology, 1987, 266, 445-455.	1.6	107
92	Microcircuitry and functional architecture of the cat retina. Trends in Neurosciences, 1986, 9, 186-192.	8.6	76
93	Accumulation of (3H)glycine by cone bipolar neurons in the cat retina. Journal of Comparative Neurology, 1986, 250, 1-7.	1.6	87
94	Granule cells in the rat olfactory tubercle accumulate $3H-\hat{l}^3$ -aminobutyric acid. Journal of Comparative Neurology, 1983, 215, 465-471.	1.6	11
95	Four types of neuron in layer IVab of cat cortical area 17 accumulate3H-GABA. Journal of Comparative Neurology, 1983, 217, 449-457.	1.6	59
96	Four types of amacrine in the cat retina that accumulate GABA. Journal of Comparative Neurology, 1983, 219, 295-304.	1.6	62
97	Two types of GABA-accumulating neurons in the superficial gray layer of the cat superior colliculus. Journal of Comparative Neurology, 1982, 206, 180-192.	1.6	92
98	Biological basis of stress-related mortality. Social Science & Medicine Part E, Medical Psychology, 1981, 15, 3-42.	0.2	148
99	Neurons and glia in cat superior colliculus accumulate [3H] gamma-aminobutyric acid (GABA). Journal of Comparative Neurology, 1981, 202, 385-396.	1.6	45
100	Neurons in cat lateral geniculate nucleus that concentrate exogenous [3H]-?-aminobutyric acid (GABA). Journal of Comparative Neurology, 1980, 192, 737-749.	1.6	93
101	A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections. Brain Research Reviews, 1980, 2, 265-293.	9.0	126
102	Microcircuitry of cat visual cortex: Classification of neurons in layer IV of area 17, and identification of the patterns of lateral geniculate input. Journal of Comparative Neurology, 1979, 188, 599-627.	1.6	112
103	Preparing autoradiograms of serial sections for electron microscopy. Journal of Neuroscience Methods, 1979, 1, 179-183.	2.5	28
104	Three-dimensional analysis of retinal neurons identified autoradiographically by utilizing selective uptake of [3H]-GABA: An electron microscope study in the cat. Neuroscience Letters, 1979, 11, 37.	2.1	0
105	An electron microscope study of motoneurones and interneurones in the cat abducens nucleus identified by retrograde intraaxonal transport of horseradish peroxidase. Journal of Comparative Neurology, 1977, 176, 65-85.	1.6	105
106	Synaptic termination of afferents from the ventrolateral nucleus of the thalamus in the cat motor cortex. A light and electron microscope study. Journal of Comparative Neurology, 1974, 153, 77-105.	1.6	161
107	Quantitative mapping with the electron microscope: retinal terminals in the superior colliculus. Brain Research, 1973, 54, 347-354.	2.2	87
108	Effect on the Superior Colliculus of Cortical Removal in Visually Deprived Cats. Nature, 1969, 224, 1032-1033.	27.8	55

PETER STERLING

#	Article	IF	CITATIONS
109	Anatomical organization of the brachial spinal cord of the cat. III. The propriospinal connections. Brain Research, 1968, 7, 419-443.	2.2	138
110	Anatomical organization of the brachial spinal cord of the cat. I. The distribution of dorsal root fibers. Brain Research, 1967, 4, 1-15.	2.2	126
111	Anatomical organization of the brachial spinal cord of the cat. II. The motoneuron plexus. Brain Research, 1967, 4, 16-32.	2.2	167