William R Lindemann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5251783/publications.pdf

Version: 2024-02-01

8 papers

94 citations 1684188 5 h-index 8 g-index

8 all docs 8 docs citations

8 times ranked

181 citing authors

#	Article	IF	CITATIONS
1	Self-assembly of aramid amphiphiles into ultra-stable nanoribbons and aligned nanoribbon threads. Nature Nanotechnology, 2021, 16, 447-454.	31.5	49
2	Interfacial Binding of Divalent Cations to Calixarene-Based Langmuir Monolayers. Langmuir, 2015, 31, 2351-2359.	3. 5	10
3	An X-ray fluorescence study on the segregation of Cs and I in an inverted organic solar cell. Organic Electronics, 2013, 14, 3190-3194.	2.6	8
4	Conformational Dynamics in Extended RGD-Containing Peptides. Biomacromolecules, 2020, 21, 2786-2794.	5 . 4	7
5	A Global Minimization Toolkit for Batch-Fitting and χ2 Cluster Analysis of CW-EPR Spectra. Biophysical Journal, 2020, 119, 1937-1945.	0.5	6
6	Quantifying residue-specific conformational dynamics of a highly reactive 29-mer peptide. Scientific Reports, 2020, 10, 2597.	3.3	6
7	The effect of cesium carbonate on 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C61 aggregation in films. Applied Physics Letters, 2014, 105, 191605.	3.3	4
8	Binding of calixarene-based Langmuir monolayers to mercury chloride is dependent on the amphiphile structure. RSC Advances, 2016, 6, 9278-9285.	3.6	4