Mathias Ziegler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5251744/publications.pdf

Version: 2024-02-01

567281 580821 63 761 15 25 citations h-index g-index papers 64 64 64 464 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Mechanisms and fast kinetics of the catastrophic optical damage (COD) in GaAsâ€based diode lasers. Laser and Photonics Reviews, 2011, 5, 422-441.	8.7	75
2	Above room temperature operation of short wavelength (î»=3.8î½m) strain-compensated In0.73Ga0.27As–AlAs quantum-cascade lasers. Applied Physics Letters, 2004, 85, 1478-1480.	3.3	66
3	Transient thermal properties of high-power diode laser bars. Applied Physics Letters, 2006, 89, 263506.	3. 3	42
4	Catastrophic optical mirror damage in diode lasers monitored during single-pulse operation. Applied Physics Letters, 2009, 94, 191101.	3.3	37
5	Efficient data evaluation for thermographic crack detection. Quantitative InfraRed Thermography Journal, 2011, 8, 119-123.	4.2	33
6	Physical limits of semiconductor laser operation: A time-resolved analysis of catastrophic optical damage. Applied Physics Letters, 2010, 97, .	3.3	29
7	Catastrophic optical damage at front and rear facets of diode lasers. Applied Physics Letters, 2010, 97, 231101.	3.3	29
8	Real-time thermal imaging of catastrophic optical damage in red-emitting high-power diode lasers. Applied Physics Letters, 2008, 92, 103514.	3.3	27
9	Surface recombination and facet heating in high-power diode lasers. Applied Physics Letters, 2008, 92, .	3.3	26
10	Laser line scanning thermography for surface breaking crack detection: modeling and experimental study. Infrared Physics and Technology, 2020, 104, 103141.	2.9	23
11	Examination of Spot Welded Joints with Active Thermography. Journal of Nondestructive Evaluation, 2016, 35, 1.	2.4	21
12	Non-destructive testing of Cu solder connections using active thermography. NDT and E International, 2012, 52, 103-111.	3.7	20
13	Time-resolved analysis of catastrophic optical damage in 975 nm emitting diode lasers. Applied Physics Letters, 2010, 96, 251105.	3.3	18
14	Optical and thermal characteristics of narrow-ridge quantum-cascade lasers. Journal of Applied Physics, 2008, 103, 083113.	2.5	16
15	Microthermography of diode lasers: The impact of light propagation on image formation. Journal of Applied Physics, 2009, 105, 014502.	2.5	16
16	Super resolution laser line scanning thermography. Optics and Lasers in Engineering, 2020, 134, 106279.	3.8	15
17	Cavity-enhanced thermal emission from semiconductor lasers. Journal of Applied Physics, 2008, 103, 104508.	2.5	14
18	Time resolved studies of catastrophic optical mirror damage in red-emitting laser diodes. Journal of Applied Physics, 2010, 107, 123116.	2.5	14

#	Article	IF	CITATIONS
19	Thermal processes in high-power laser bars investigated by spatially resolved thermoreflectance. Journal of Materials Science: Materials in Electronics, 2008, 19, 150-154.	2.2	13
20	Photothermal super resolution imaging: A comparison of different thermographic reconstruction techniques. NDT and E International, 2020, 111, 102228.	3.7	13
21	Classification of Spot-Welded Joints in Laser Thermography Data Using Convolutional Neural Networks. IEEE Access, 2021, 9, 48303-48312.	4.2	13
22	Laser excited super resolution thermal imaging for nondestructive inspection of internal defects. Scientific Reports, 2020, 10, 22357.	3.3	12
23	Electron-optical-phonon interaction in the In0.73Ga0.27As–AlAs intersubband laser. Applied Physics Letters, 2005, 87, 072104.	3.3	11
24	Infrared emission from the substrate of GaAs-based semiconductor lasers. Applied Physics Letters, 2008, 93, .	3.3	11
25	Gradual degradation of GaAsâ€based quantum well lasers, creation of defects, and generation of compressive strain. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1912-1915.	1.8	11
26	Spectroscopic analysis of packaging concepts for high-power diode laser bars. Applied Physics A: Materials Science and Processing, 2012, 107, 371-377.	2.3	11
27	Multidimensional Reconstruction of Internal Defects in Additively Manufactured Steel Using Photothermal Super Resolution Combined With Virtual Wave-Based Image Processing. IEEE Transactions on Industrial Informatics, 2021, 17, 7368-7378.	11.3	11
28	Laser-projected photothermal thermography using thermal wave field interference for subsurface defect characterization. Applied Physics Letters, 2016, 109, .	3.3	10
29	Imaging Catastrophic Optical Mirror Damage in High-Power Diode Lasers. Journal of Electronic Materials, 2010, 39, 709-714.	2.2	9
30	Influence of the acquisition parameters on the performance of laser-thermography for crack detection in metallic components. , 2014, , .		9
31	Calibration of thermographic spot weld testing with X-ray computed tomography. Quantitative InfraRed Thermography Journal, 2017, 14, 122-131.	4.2	8
32	Proton-Implanted Shallow-Ridge Quantum-Cascade Laser. IEEE Journal of Quantum Electronics, 2006, 42, 490-493.	1.9	7
33	Gradual degradation of red-emitting high-power diode laser bars. Applied Physics Letters, 2007, 90, 171113.	3.3	7
34	Visualization of heat flows in high-power diode lasers by lock-in thermography. Applied Physics Letters, 2008, 92, 103513.	3.3	7
35	Photothermal-SR-Net: A Customized Deep Unfolding Neural Network for Photothermal Super Resolution Imaging. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	4.7	7
36	High-power short-wavelength quantum cascade lasers. , 2005, 5738, 13.		6

#	Article	IF	CITATIONS
37	Physics, growth, and performance of (In,Ga)As–AlP/InP quantum-cascade lasers emitting atl̂» < 4 Î⅓m. Physica Status Solidi (B): Basic Research, 2007, 244, 2906-2915.	1.5	6
38	Spatial and temporal control of thermal waves by using DMDs for interference based crack detection. Proceedings of SPIE, 2016 , , .	0.8	6
39	Thermography using a 1D laser array – From planar to structured heating. Materialpruefung/Materials Testing, 2018, 60, 749-757.	2.2	6
40	Near-infrared intersubband transitions in InGaAs–AlAs–InAlAs double quantum wells. Journal of Applied Physics, 2005, 97, 113538.	2.5	5
41	Localization of Subsurface Defects in Uncoated Aluminum with Structured Heating Using High-Power VCSEL Laser Arrays. International Journal of Thermophysics, 2019, 40, 1.	2.1	5
42	New approaches towards the understanding of the catastrophic optical damage process in in-plane diode lasers. Proceedings of SPIE, 2009, , .	0.8	4
43	Subsurface Defect Localization by Structured Heating Using Laser Projected Photothermal Thermography. Journal of Visualized Experiments, 2017, , .	0.3	4
44	Thermographic detection of internal defects using 2D photothermal super resolution reconstruction with sequential laser heating. Journal of Applied Physics, 2022, 131, .	2.5	4
45	Accurate determination of absolute temperatures of GaAs based high-power diode lasers. , 2008, , .		3
46	Screening of high power laser diode bars in terms of stresses and thermal profiles. , 2008, , .		3
47	Two-dimensional carrier density distribution inside a high power tapered laser diode. Applied Physics Letters, 2011, 98, 221110.	3.3	3
48	Defect detection in steel bars up to $600 \hat{A} \hat{A}^{\circ} \text{C}$ using laser line thermography. Infrared Physics and Technology, 2020, 111, 103565.	2.9	3
49	Investigations on photothermal super resolution reconstruction using 2D-structured illumination patterns., 2021,,.		3
50	Degradation behavior and thermal properties of red (650 nm) high-power diode single emitters and laser bars. , 2007, , .		2
51	Strain-compensated AlAs/(In,Ga)As heterostructures for short-wavelength intersubband absorption and laser emission. Journal of Crystal Growth, 2005, 278, 526-531.	1.5	1
52	Thermal Imaging of Actively Cooled High-Power Laser Bars. , 2007, , .		1
53	Catastrophic optical mirror damage of high power diode lasers. , 2009, , .		1
54	Laser based spot weld characterization. AIP Conference Proceedings, 2016, , .	0.4	1

#	Article	lF	Citations
55	C2.2 2D-Photothermal Super Resolution with Sparse Matrix Stacking. , 2021, , .		1
56	Full-frame thermographic super-resolution with 2D-structured laser heating., 2021,,.		1
57	Wämebehandlung und zerstörungsfreie PrÃ⅓fung: OberflÃ⊠henrisse mit der Laser-Thermografie finden*. HTM - Journal of Heat Treatment and Materials, 2015, 70, 190-195.	0.2	1
58	Catastrophic optical damage in high-power diode lasers monitored by real-time imaging. , 2008, , .		0
59	Defect Imaging in Laser Diodes by Mapping Their Near-Infrared Emission. Journal of Electronic Materials, 2010, 39, 723-726.	2.2	0
60	Catastrophic optical mirror damage in diode lasers monitored during single pulse operation. , 2010, , .		0
61	Catastrophic Optical Damage at Front and Rear Facets of 975 nm Emitting Diode Lasers. , 2011, , .		0
62	Thermal wave interference with high-power VCSEL arrays for locating vertically oriented subsurface defects. AIP Conference Proceedings, 2018, , .	0.4	0
63	Detection of Surface Breaking Cracks Using Flying Line Laser Thermography: A Canny-Based Algorithm. Engineering Proceedings, 2021, 8, .	0.4	0