Halyna Semchyshyn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5251734/publications.pdf

Version: 2024-02-01

566801 580395 26 884 15 citations h-index papers

25 g-index 26 26 26 1132 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Increase of \hat{l} ±-dicarbonyls in liver and receptor for advanced glycation end products on immune cells are linked to nonalcoholic fatty liver disease and liver cancer. Oncolmmunology, 2021, 10, 1874159.	2.1	9
2	Is carbonyl/AGE/RAGE stress a hallmark of the brain aging?. Pflugers Archiv European Journal of Physiology, 2021, 473, 723-734.	1.3	13
3	Reactive Carbonyls Induce TOR- and Carbohydrate-Dependent Hormetic Response in Yeast. Scientific World Journal, The, 2020, 2020, 1-6.	0.8	3
4	Healthy brain aging: Interplay between reactive species, inflammation and energy supply. Ageing Research Reviews, 2018, 43, 26-45.	5.0	79
5	Is Part of the Fructose Effects on Health Related to Increased AGE Formation?. , 2017, , 103-112.		O
6	Fructose-Induced Carbonyl/Oxidative Stress inS. cerevisiae: Involvement of TOR. Biochemistry Research International, 2016, 2016, 1-10.	1.5	2
7	Hormetic Effect of H ₂ O ₂ in <i>Saccharomyces cerevisiae</i> Dose-Response, 2016, 14, 155932581663613.	0.7	13
8	Carbon Sources for Yeast Growth as a Precondition of Hydrogen Peroxide Induced Hormetic Phenotype. International Journal of Microbiology, 2015, 2015, 1-8.	0.9	17
9	Reactive Carbonyl Species <i>In Vivo</i> : Generation and Dual Biological Effects. Scientific World Journal, The, 2014, 2014, 1-10.	0.8	138
10	Hormetic Concentrations of Hydrogen Peroxide but Not Ethanol Induce Cross-Adaptation to Different Stresses in Budding Yeast. International Journal of Microbiology, 2014, 2014, 1-5.	0.9	28
11	Fructose compared with glucose is more a potent glycoxidation agent in vitro, but not under carbohydrate-induced stress in vivo: potential role of antioxidant and antiglycation enzymes. Carbohydrate Research, 2014, 384, 61-69.	1.1	37
12	Fructation <i>In Vivo</i> : Detrimental and Protective Effects of Fructose. BioMed Research International, 2013, 2013, 1-9.	0.9	41
13	Fructose protects baker's yeast against peroxide stress: potential role of catalase and superoxide dismutase. FEMS Yeast Research, 2012, 12, 761-773.	1.1	43
14	Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohydrate Research, 2011, 346, 933-938.	1.1	53
15	Acetate but not propionate induces oxidative stress in bakers' yeast <i>Saccharomyces cerevisiae</i> Redox Report, 2011, 16, 15-23.	1.4	54
16	Hydrogen peroxide-induced response in E. coli and S. cerevisiae: different stages of the flow of the genetic information. Open Life Sciences, 2009, 4, 142-153.	0.6	16
17	Inhibition of catalase by aminotriazole in vivo results in reduction of glucose-6-phosphate dehydrogenase activity in Saccharomyces cerevisiae cells. Biochemistry (Moscow), 2008, 73, 420-426.	0.7	16
18	Pdr12p-dependent and -independent fluorescein extrusion from baker's yeast cells Acta Biochimica Polonica, 2008, 55, 595-601.	0.3	7

#	Article	lF	CITATIONS
19	Growth on ethanol results in co-ordinatedSaccharomyces cerevisiaeresponse to inactivation of genes encoding superoxide dismutases. Redox Report, 2007, 12, 181-188.	1.4	6
20	Possible accumulation of non-active molecules of catalase and superoxide dismutase in S. cerevisiae cells under hydrogen peroxide induced stress. Open Life Sciences, 2007, 2, 326-336.	0.6	8
21	Effect of hydrogen peroxide on antioxidant enzyme activities in Saccharomyces cerevisiae is strain-specific. Biochemistry (Moscow), 2006, 71, 1013-1020.	0.7	56
22	Hydrogen peroxide increases the activities of regulon enzymes and the levels of oxidized proteins and lipids in. Cell Biology International, 2005, 29, 898-902.	1.4	78
23	Possible Reasons for Difference in Sensitivity to Oxygen of Two Escherichia coli Strains. Biochemistry (Moscow), 2005, 70, 424-431.	0.7	16
24	Involvement of soxRS Regulon in Response of Escherichia coli to Oxidative Stress Induced by Hydrogen Peroxide. Biochemistry (Moscow), 2005, 70, 1238-1244.	0.7	21
25	Diethyldithiocarbamate inhibits in vivo Cu,Zn-superoxide dismutase and perturbs free radical processes in the yeast Saccharomyces cerevisiae cells. Biochemical and Biophysical Research Communications, 2005, 338, 1739-1744.	1.0	67
26	Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Archives of Biochemistry and Biophysics, 2005, 441, 35-40.	1.4	63