Walter Wahli

List of Publications by Citations

Source: https://exaly.com/author-pdf/5251596/walter-wahli-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

90 179 291 33,434 h-index g-index citations papers 35,963 7.01 304 9.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
291	Peroxisome proliferator-activated receptors: nuclear control of metabolism. <i>Endocrine Reviews</i> , 1999 , 20, 649-88	27.2	2239
2 90	Roles of PPARs in health and disease. <i>Nature</i> , 2000 , 405, 421-4	50.4	1589
289	Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. <i>Journal of Clinical Investigation</i> , 1999 , 103, 1489-98	15.9	1256
288	The PPARalpha-leukotriene B4 pathway to inflammation control. <i>Nature</i> , 1996 , 384, 39-43	50.4	1219
287	Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. <i>Cell</i> , 1992 , 68, 879-87	56.2	1188
286	Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. <i>Molecular Endocrinology</i> , 1997 , 11, 779-91		988
285	International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. <i>Pharmacological Reviews</i> , 2006 , 58, 726-41	22.5	749
284	Transcriptional regulation of metabolism. <i>Physiological Reviews</i> , 2006 , 86, 465-514	47.9	632
283	Peroxisome proliferator-activated receptors: a nuclear receptor signaling pathway in lipid physiology. <i>Annual Review of Cell and Developmental Biology</i> , 1996 , 12, 335-63	12.6	601
282	From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. <i>Progress in Lipid Research</i> , 2006 , 45, 120-5	59 ^{14.3}	564
281	Antiapoptotic role of PPARbeta in keratinocytes via transcriptional control of the Akt1 signaling pathway. <i>Molecular Cell</i> , 2002 , 10, 721-33	17.6	542
280	Peroxisome-proliferator-activated receptors and cancers: complex stories. <i>Nature Reviews Cancer</i> , 2004 , 4, 61-70	31.3	484
279	PPARs at the crossroads of lipid signaling and inflammation. <i>Trends in Endocrinology and Metabolism</i> , 2012 , 23, 351-63	8.8	445
278	Characterization of the fasting-induced adipose factor FIAF, a novel peroxisome proliferator-activated receptor target gene. <i>Journal of Biological Chemistry</i> , 2000 , 275, 28488-93	5.4	404
277	Selective cooperation between fatty acid binding proteins and peroxisome proliferator-activated receptors in regulating transcription. <i>Molecular and Cellular Biology</i> , 2002 , 22, 5114-27	4.8	400
276	Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. <i>Endocrinology</i> , 2001 , 142, 4195-202	4.8	399
275	Differential expression of peroxisome proliferator-activated receptor-alpha, -beta, and -gamma during rat embryonic development. <i>Endocrinology</i> , 1998 , 139, 2748-54	4.8	389

(1997-2001)

274	Attenuation of colon inflammation through activators of the retinoid X receptor (RXR)/peroxisome proliferator-activated receptor gamma (PPARgamma) heterodimer. A basis for new therapeutic strategies. <i>Journal of Experimental Medicine</i> , 2001 , 193, 827-38	16.6	371
273	Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator-activated receptor-gamma. <i>Journal of Experimental Medicine</i> , 2005 , 201, 1205-15	16.6	361
272	Peroxisome proliferator-activated receptors: insight into multiple cellular functions. <i>Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis</i> , 2000 , 448, 121-38	3.3	357
271	Cyclooxygenase-2 controls energy homeostasis in mice by de novo recruitment of brown adipocytes. <i>Science</i> , 2010 , 328, 1158-61	33.3	355
270	Impaired skin wound healing in peroxisome proliferator-activated receptor (PPAR)alpha and PPARbeta mutant mice. <i>Journal of Cell Biology</i> , 2001 , 154, 799-814	7.3	354
269	Nuclear hormone receptor coregulators in action: diversity for shared tasks. <i>Molecular Endocrinology</i> , 2000 , 14, 329-47		330
268	Critical roles of PPAR beta/delta in keratinocyte response to inflammation. <i>Genes and Development</i> , 2001 , 15, 3263-77	12.6	328
267	Liver PPARHs crucial for whole-body fatty acid homeostasis and is protective against NAFLD. <i>Gut</i> , 2016 , 65, 1202-14	19.2	327
266	Peroxisome proliferator-activated receptor gamma is required in mature white and brown adipocytes for their survival in the mouse. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 4543-7	11.5	303
265	Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. <i>Journal of Biological Chemistry</i> , 1995 , 270, 19269-76	5.4	303
264	The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. <i>Journal of Biological Chemistry</i> , 2006 , 281, 934-44	5.4	301
263	DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response elements. Importance of the 5Rflanking region. <i>Journal of Biological Chemistry</i> , 1997 , 272, 25252-9	5.4	300
262	PGC1alpha expression is controlled in skeletal muscles by PPARbeta, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. <i>Cell Metabolism</i> , 2006 , 4, 407-14	24.6	282
261	Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. <i>FASEB Journal</i> , 1991 , 5, 2243-9	0.9	271
260	Expression of the peroxisome proliferator-activated receptor alpha gene is stimulated by stress and follows a diurnal rhythm. <i>Journal of Biological Chemistry</i> , 1996 , 271, 1764-9	5.4	264
259	Reciprocal regulation of brain and muscle Arnt-like protein 1 and peroxisome proliferator-activated receptor alpha defines a novel positive feedback loop in the rodent liver circadian clock. <i>Molecular Endocrinology</i> , 2006 , 20, 1715-27		259
258	The endocrine disruptor monoethyl-hexyl-phthalate is a selective peroxisome proliferator-activated receptor gamma modulator that promotes adipogenesis. <i>Journal of Biological Chemistry</i> , 2007 , 282, 19152-66	5.4	249
257	Polarity and specific sequence requirements of peroxisome proliferator-activated receptor (PPAR)/retinoid X receptor heterodimer binding to DNA. A functional analysis of the malic enzyme gene PPAR response element. <i>Journal of Biological Chemistry</i> , 1997 , 272, 20108-17	5.4	243

256	Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes. <i>Nucleic Acids Research</i> , 1984 , 12, 8611-26	20.1	237
255	Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB Journal, 2005, 19, 1602-16	0.9	236
254	Vitellogenin in Xenopus laevis is encoded in a small family of genes. <i>Cell</i> , 1979 , 16, 535-49	56.2	221
253	Evolution and expression of vitellogenin genes. <i>Trends in Genetics</i> , 1988 , 4, 227-32	8.5	213
252	The direct peroxisome proliferator-activated receptor target fasting-induced adipose factor (FIAF/PGAR/ANGPTL4) is present in blood plasma as a truncated protein that is increased by fenofibrate treatment. <i>Journal of Biological Chemistry</i> , 2004 , 279, 34411-20	5.4	207
251	Positive regulation of the peroxisomal beta-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). <i>Biology of the Cell</i> , 1993 , 77, 67-76	3.5	207
250	Be fit or be sick: peroxisome proliferator-activated receptors are down the road. <i>Molecular Endocrinology</i> , 2004 , 18, 1321-32		185
249	PPAREgoverns glycerol metabolism. <i>Journal of Clinical Investigation</i> , 2004 , 114, 94-103	15.9	184
248	A new selective peroxisome proliferator-activated receptor gamma antagonist with antiobesity and antidiabetic activity. <i>Molecular Endocrinology</i> , 2002 , 16, 2628-44		182
247	Activation of peroxisome proliferator-activated receptors (PPARs) by their ligands and protein kinase A activators. <i>Molecular Endocrinology</i> , 2000 , 14, 1962-75		180
246	The peroxisome proliferator-activated receptor alpha regulates amino acid metabolism. <i>FASEB Journal</i> , 2001 , 15, 1971-8	0.9	177
245	The European dimension for the mouse genome mutagenesis program. <i>Nature Genetics</i> , 2004 , 36, 925-7	736.3	176
244	The G0/G1 switch gene 2 is a novel PPAR target gene. <i>Biochemical Journal</i> , 2005 , 392, 313-24	3.8	176
243	Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. <i>Molecular and Cellular Biology</i> , 2005 , 25, 10407-18	4.8	175
242	Do peroxisome proliferating compounds pose a hepatocarcinogenic hazard to humans?. <i>Regulatory Toxicology and Pharmacology</i> , 1998 , 27, 47-60	3.4	172
241	Peroxisome proliferator-activated receptor agonists. <i>Current Opinion in Chemical Biology</i> , 1997 , 1, 235-4	19.7	169
240	Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions. <i>Current Opinion in Biotechnology</i> , 1999 , 10, 564-70	11.4	168
239	Identification of estrogen-responsive DNA sequences by transient expression experiments in a human breast cancer cell line. <i>Nucleic Acids Research</i> , 1986 , 14, 8755-70	20.1	168

238	PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. <i>Microscopy Research and Technique</i> , 2005 , 68, 51-8	2.8	166
237	Mechanisms of the anti-obesity effects of oxytocin in diet-induced obese rats. <i>PLoS ONE</i> , 2011 , 6, e2556	5 .7	166
236	Differentiation of trophoblast giant cells and their metabolic functions are dependent on peroxisome proliferator-activated receptor beta/delta. <i>Molecular and Cellular Biology</i> , 2006 , 26, 3266-81	₁ 4.8	165
235	Involvement of PPAR nuclear receptors in tissue injury and wound repair. <i>Journal of Clinical Investigation</i> , 2006 , 116, 598-606	15.9	161
234	In vivo activation of PPAR target genes by RXR homodimers. <i>EMBO Journal</i> , 2004 , 23, 2083-91	13	159
233	Crosstalk between peroxisome proliferator-activated receptor delta and VEGF stimulates cancer progression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2006 , 103, 19069-74	11.5	158
232	PPARs in diseases: control mechanisms of inflammation. <i>Current Medicinal Chemistry</i> , 2005 , 12, 2995-300	149. 3	152
231	Peroxisome-proliferator-activated receptor (PPAR)-gamma activation stimulates keratinocyte differentiation. <i>Journal of Investigative Dermatology</i> , 2004 , 123, 305-12	4.3	150
230	Peroxisome proliferator-activated receptors: finding the orphan a home. <i>Molecular and Cellular Endocrinology</i> , 1994 , 100, 149-53	4.4	144
229	Peroxisome proliferator-activated receptor beta/delta activation inhibits hypertrophy in neonatal rat cardiomyocytes. <i>Cardiovascular Research</i> , 2005 , 65, 832-41	9.9	141
228	PPAR tissue distribution and interactions with other hormone-signaling pathways. <i>Annals of the New York Academy of Sciences</i> , 1996 , 804, 231-51	6.5	141
227	Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2007 , 1771, 991-8	5	133
226	Rat PPARs: Quantitative Analysis in Adult Rat Tissues and Regulation in Fasting and Refeeding		132
225	High-fat diet modifies the PPAR-pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E5934-E5943	11.5	124
224	The gut microbiota influences skeletal muscle mass and function in mice. <i>Science Translational Medicine</i> , 2019 , 11,	17.5	124
223	Differential involvement of peroxisome-proliferator-activated receptors hand In fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. <i>Biochemical Journal</i> , 2001 , 355, 481-488	3.8	123
222	Peroxisome proliferator-activated receptor mediates cross-talk with thyroid hormone receptor by competition for retinoid X receptor. Possible role of a leucine zipper-like heptad repeat. <i>Journal of Biological Chemistry</i> , 1995 , 270, 18117-22	5.4	123
221	Precursor-product relationship between vitellogenin and the yolk proteins as derived from the complete sequence of a Xenopus vitellogenin gene. <i>Nucleic Acids Research</i> , 1987 , 15, 4737-60	20.1	122

220	Peroxisome proliferator-activated receptors mediate host cell proinflammatory responses to Pseudomonas aeruginosa autoinducer. <i>Journal of Bacteriology</i> , 2008 , 190, 4408-15	3.5	112
219	Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2005 , 93, 99-105	5.1	110
218	Peroxisome proliferator-activated receptor-beta signaling contributes to enhanced proliferation of hepatic stellate cells. <i>Gastroenterology</i> , 2003 , 124, 184-201	13.3	110
217	PPAR expression and function during vertebrate development. <i>International Journal of Developmental Biology</i> , 2002 , 46, 105-14	1.9	110
216	Fat poetry: a kingdom for PPAR gamma. Cell Research, 2007, 17, 486-511	24.7	109
215	Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period. <i>Endocrinology</i> , 2001 , 142, 4831-8	4.8	107
214	Comparative analysis of the structural organization of two closely related vitellogenin genes in X. laevis. <i>Cell</i> , 1980 , 20, 107-17	56.2	106
213	Sex difference in hepatic peroxisome proliferator-activated receptor alpha expression: influence of pituitary and gonadal hormones. <i>Endocrinology</i> , 2003 , 144, 101-9	4.8	104
212	Peroxisome proliferator-activated receptor beta regulates acyl-CoA synthetase 2 in reaggregated rat brain cell cultures. <i>Journal of Biological Chemistry</i> , 1999 , 274, 35881-8	5.4	102
211	Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet. <i>Diabetes</i> , 2011 , 60, 464-76	0.9	101
210	Quantitation of vitellogenin messenger RNA in the liver of male Xenopus toads during primary and secondary stimulation by estrogen. <i>Cell</i> , 1977 , 11, 213-21	56.2	101
209	Loss of egg yolk genes in mammals and the origin of lactation and placentation. <i>PLoS Biology</i> , 2008 , 6, e63	9.7	97
208	PPARbeta/delta regulates paneth cell differentiation via controlling the hedgehog signaling pathway. <i>Gastroenterology</i> , 2006 , 131, 538-53	13.3	96
207	Peroxisome proliferator-activated receptor beta/delta exerts a strong protection from ischemic acute renal failure. <i>Journal of the American Society of Nephrology: JASN</i> , 2005 , 16, 2395-402	12.7	94
206	Activation of peroxisome proliferator-activated receptor beta/delta inhibits lipopolysaccharide-induced cytokine production in adipocytes by lowering nuclear factor-kappaB activity via extracellular signal-related kinase 1/2. <i>Diabetes</i> , 2008 , 57, 2149-57	0.9	93
205	PPARalpha governs glycerol metabolism. <i>Journal of Clinical Investigation</i> , 2004 , 114, 94-103	15.9	93
204	Fluorescence imaging reveals the nuclear behavior of peroxisome proliferator-activated receptor/retinoid X receptor heterodimers in the absence and presence of ligand. <i>Journal of Biological Chemistry</i> , 2005 , 280, 17880-90	5.4	92
203	Differential involvement of peroxisome-proliferator-activated receptors alpha and delta in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. <i>Biochemical Journal</i> , 2001 , 355, 481-8	3.8	91

202	Dual PPAR抽gonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. <i>Liver International</i> , 2018 , 38, 1084-1094	7.9	90	
201	Differential regulation of vascular endothelial growth factor expression by peroxisome proliferator-activated receptors in bladder cancer cells. <i>Journal of Biological Chemistry</i> , 2002 , 277, 2353	34 ⁵ 43	88	
200	Sumoylated PPARalpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. <i>Journal of Clinical Investigation</i> , 2009 , 119, 3138-48	15.9	88	
199	PPARs as drug targets to modulate inflammatory responses?. <i>Inflammation and Allergy: Drug Targets</i> , 2004 , 3, 361-75		87	
198	Regulation of epithelial-mesenchymal IL-1 signaling by PPARbeta/delta is essential for skin homeostasis and wound healing. <i>Journal of Cell Biology</i> , 2009 , 184, 817-31	7.3	85	
197	Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor. <i>Molecular and Cellular Endocrinology</i> , 1997 , 127, 27-40	4.4	83	
196	Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor alpha transcriptional up-regulation of fatty acid oxidation. <i>Endocrinology</i> , 2005 , 146, 375-82	4.8	81	
195	PPAR alpha structure-function relationships derived from species-specific differences in responsiveness to hypolipidemic agents. <i>Biological Chemistry</i> , 1997 , 378, 651-5	4.5	80	
194	Peroxisome proliferator-activated receptors and lipid metabolism. <i>Annals of the New York Academy of Sciences</i> , 1993 , 684, 157-73	6.5	76	
193	Role of prostacyclin versus peroxisome proliferator-activated receptor beta receptors in prostacyclin sensing by lung fibroblasts. <i>American Journal of Respiratory Cell and Molecular Biology</i> , 2006 , 34, 242-6	5.7	75	
192	The peroxisome proliferator-activated receptors at the cross-road of diet and hormonal signalling. Journal of Steroid Biochemistry and Molecular Biology, 1998 , 65, 65-74	5.1	73	
191	IL-13 induces expression of CD36 in human monocytes through PPARgamma activation. <i>European Journal of Immunology</i> , 2007 , 37, 1642-52	6.1	73	
190	Peroxisome proliferator-activated receptors A link between endocrinology and nutrition?. <i>Trends in Endocrinology and Metabolism</i> , 1993 , 4, 291-6	8.8	73	
189	Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. <i>Scientific Reports</i> , 2016 , 6, 20127	4.9	72	
188	PPARs Mediate Lipid Signaling in Inflammation and Cancer. PPAR Research, 2008, 2008, 134059	4.3	72	
187	PPAR/Inprevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. <i>Diabetologia</i> , 2014 , 57, 2126-35	10.3	71	
186	Malignant transformation of DMBA/TPA-induced papillomas and nevi in the skin of mice selectively lacking retinoid-X-receptor alpha in epidermal keratinocytes. <i>Journal of Investigative Dermatology</i> , 2007 , 127, 1250-60	4.3	71	
185	Role of the circadian clock gene Per2 in adaptation to cold temperature. <i>Molecular Metabolism</i> , 2013 , 2, 184-93	8.8	70	

184	Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts. <i>Cell Research</i> , 2011 , 21, 1591-604	24.7	70
183	Peroxisome proliferator-activated receptors (PPARs): from metabolic control to epidermal wound healing. <i>Swiss Medical Weekly</i> , 2002 , 132, 83-91	3.1	70
182	Essential role of Smad3 in the inhibition of inflammation-induced PPARbeta/delta expression. <i>EMBO Journal</i> , 2004 , 23, 4211-21	13	69
181	Complementary DNA cloning of complement C8 beta and its sequence homology to C9. <i>Biochemistry</i> , 1987 , 26, 3551-6	3.2	69
180	Peroxisome proliferator-activated receptor-alpha-null mice have increased white adipose tissue glucose utilization, GLUT4, and fat mass: Role in liver and brain. <i>Endocrinology</i> , 2006 , 147, 4067-78	4.8	68
179	Vertebrate and nematode genes coding for yolk proteins are derived from a common ancestor. <i>Biochemistry</i> , 1987 , 26, 6397-402	3.2	67
178	A Specific ChREBP and PPARE ross-Talk Is Required for the Glucose-Mediated FGF21 Response. <i>Cell Reports</i> , 2017 , 21, 403-416	10.6	66
177	The selective peroxisome proliferator-activated receptor alpha modulator (SPPARM#paradigm: conceptual framework and therapeutic potential: A consensus statement from the International Atherosclerosis Society (IAS) and the Residual Risk Reduction Initiative (R3i) Foundation.	8.7	64
176	The nuclear hormone receptor PPARI£ounteracts vascular calcification by inhibiting Wnt5a signalling in vascular smooth muscle cells. <i>Nature Communications</i> , 2012 , 3, 1077	17.4	63
175	The anti-apoptotic role of PPARbeta contributes to efficient skin wound healing. <i>Journal of Steroid Biochemistry and Molecular Biology</i> , 2003 , 85, 257-65	5.1	63
174	Activation of the mouse TATA-less and human TATA-containing UDP-glucuronosyltransferase 1A1 promoters by hepatocyte nuclear factor 1. <i>Molecular Pharmacology</i> , 1999 , 56, 526-36	4.3	61
173	Application of recombinant DNA technology to questions of developmental biology: a review. <i>Developmental Biology</i> , 1979 , 69, 305-28	3.1	61
172	Size, complexity and abundance of a specific poly(A)-containing RNA of liver from male Xenopus induced to vitellogenin synthesis by estrogen. <i>FEBS Journal</i> , 1976 , 66, 457-65		61
171	Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase. <i>Cell Reports</i> , 2018 , 22, 760-773	10.6	60
170	Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor alpha (PPARalpha) activity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2011 , 108, 4794-9	11.5	60
169	Atherosclerotic mice exhibit systemic inflammation in periadventitial and visceral adipose tissue, liver, and pancreatic islets. <i>Atherosclerosis</i> , 2009 , 207, 360-7	3.1	60
168	A growth hormone-releasing peptide that binds scavenger receptor CD36 and ghrelin receptor up-regulates sterol transporters and cholesterol efflux in macrophages through a peroxisome proliferator-activated receptor gamma-dependent pathway. <i>Molecular Endocrinology</i> , 2006 , 20, 3165-78		60
167	Activation of peroxisome proliferator-activated receptor-IA-IPPAR-IA-III ameliorates insulin signaling and reduces SOCS3 levels by inhibiting STAT3 in interleukin-6-stimulated adipocytes. <i>Diabetes</i> , 2011 , 60, 1990-9	0.9	59

(2007-1978)

166	Cloning and characterization of synthetic sequences from the Xenopus iaevis vitellogenin structural gene. <i>Developmental Biology</i> , 1978 , 67, 371-83	3.1	59
165	PPAR/Mactivation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. <i>Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids</i> , 2011 , 1811, 59-67	5	58
164	Functional interactions between the estrogen receptor and the transcription activator Sp1 regulate the estrogen-dependent transcriptional activity of the vitellogenin A1 io promoter. <i>Journal of Biological Chemistry</i> , 1997 , 272, 18250-60	5.4	58
163	Kinase signaling cascades that modulate peroxisome proliferator-activated receptors. <i>Current Opinion in Cell Biology</i> , 2005 , 17, 216-22	9	57
162	Peroxisome proliferator activated receptor agonists. <i>Exs</i> , 2000 , 89, 141-51		57
161	Epithelium-mesenchyme interactions control the activity of peroxisome proliferator-activated receptor beta/delta during hair follicle development. <i>Molecular and Cellular Biology</i> , 2005 , 25, 1696-712	4.8	55
160	PPAR/Dattenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. <i>International Journal of Cardiology</i> , 2014 , 174, 110-8	3.2	53
159	The nuclear hormone receptor peroxisome proliferator-activated receptor beta/delta potentiates cell chemotactism, polarization, and migration. <i>Molecular and Cellular Biology</i> , 2007 , 27, 7161-75	4.8	53
158	GW501516-activated PPAR/Ipromotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. <i>Cell and Bioscience</i> , 2012 , 2, 34	9.8	52
157	The Interleukin-1 receptor antagonist is a direct target gene of PPARalpha in liver. <i>Journal of Hepatology</i> , 2007 , 46, 869-77	13.4	52
156	PPARbeta regulates vitamin A metabolism-related gene expression in hepatic stellate cells undergoing activation. <i>Journal of Lipid Research</i> , 2003 , 44, 280-95	6.3	52
155	Amphibian albumins as members of the albumin, alpha-fetoprotein, vitamin D-binding protein multigene family. <i>Journal of Molecular Evolution</i> , 1989 , 29, 344-54	3.1	52
154	Impaired expression of NADH dehydrogenase subunit 1 and PPARgamma coactivator-1 in skeletal muscle of ZDF rats: restoration by troglitazone. <i>Journal of Lipid Research</i> , 2004 , 45, 113-23	6.3	50
153	Hepatic regulation of VLDL receptor by PPAR/Hand FGF21 modulates non-alcoholic fatty liver disease. <i>Molecular Metabolism</i> , 2018 , 8, 117-131	8.8	49
152	Peroxisome proliferator-activated receptors beta/delta: emerging roles for a previously neglected third family member. <i>Current Opinion in Lipidology</i> , 2003 , 14, 129-35	4.4	49
151	Regional variations in ABC transporter expression along the mouse intestinal tract. <i>Physiological Genomics</i> , 2004 , 17, 11-20	3.6	48
150	Sex differences in nuclear receptor-regulated liver metabolic pathways. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2011 , 1812, 964-73	6.9	46
149	Stage-specific integration of maternal and embryonic peroxisome proliferator-activated receptor delta signaling is critical to pregnancy success. <i>Journal of Biological Chemistry</i> , 2007 , 282, 37770-82	5.4	46

148	New insights into the role of PPARs. Prostaglandins Leukotrienes and Essential Fatty Acids, 2011, 85, 23	5-438	45
147	Evolution of vitellogenin genes: comparative analysis of the nucleotide sequences downstream of the transcription initiation site of four Xenopus laevis and one chicken gene. <i>Nucleic Acids Research</i> , 1984 , 12, 8595-609	20.1	45
146	Transcriptional control of physiological and pathological processes by the nuclear receptor PPAR <i>Progress in Lipid Research</i> , 2016 , 64, 98-122	14.3	45
145	Vitellogenin B2 gene in Xenopus laevis: isolation, in vitro transcription and relation to other vitellogenin genes. <i>Nucleic Acids Research</i> , 1983 , 11, 2979-97	20.1	44
144	Functions of the peroxisome proliferator-activated receptor (PPAR) alpha and beta in skin homeostasis, epithelial repair, and morphogenesis. <i>Journal of Investigative Dermatology Symposium Proceedings</i> , 2006 , 11, 30-5	1.1	42
143	Functions of peroxisome proliferator-activated receptors (PPAR) in skin homeostasis. <i>Lipids</i> , 2004 , 39, 1093-9	1.6	42
142	Synthetic and natural Peroxisome Proliferator-Activated Receptor (PPAR) agonists as candidates for the therapy of the metabolic syndrome. <i>Expert Opinion on Therapeutic Targets</i> , 2017 , 21, 333-348	6.4	40
141	PPARHs Required for PPARFAction in Regulation of Body Weight and Hepatic Steatosis in Mice. <i>PPAR Research</i> , 2015 , 2015, 927057	4.3	38
140	Adipose tissue integrity as a prerequisite for systemic energy balance: a critical role for peroxisome proliferator-activated receptor gamma. <i>Journal of Biological Chemistry</i> , 2007 , 282, 29946-57	5.4	38
139	Hepatic deficiency in transcriptional cofactor TBL1 promotes liver steatosis and hypertriglyceridemia. <i>Cell Metabolism</i> , 2011 , 13, 389-400	24.6	37
138	Lack of hypotriglyceridemic effect of gemfibrozil as a consequence of age-related changes in rat liver PPARalpha. <i>Biochemical Pharmacology</i> , 2004 , 67, 157-66	6	37
137	Transcriptional repression of peroxisome proliferator-activated receptor beta/delta in murine keratinocytes by CCAAT/enhancer-binding proteins. <i>Journal of Biological Chemistry</i> , 2005 , 280, 38700-7	10 ^{5.4}	37
136	Isolation and translation in vitro of four related vitellogenin mRNAs of estrogen-stimulated Xenopus laevis. <i>FEBS Journal</i> , 1980 , 105, 17-24		37
135	Src is activated by the nuclear receptor peroxisome proliferator-activated receptor In ultraviolet radiation-induced skin cancer. <i>EMBO Molecular Medicine</i> , 2014 , 6, 80-98	12	35
134	Association with coregulators is the major determinant governing peroxisome proliferator-activated receptor mobility in living cells. <i>Journal of Biological Chemistry</i> , 2007 , 282, 4417-	44 ⁵ 2 6	35
133	Chemical probes that differentially modulate peroxisome proliferator-activated receptor alpha and BLTR, nuclear and cell surface receptors for leukotriene B(4). <i>Journal of Biological Chemistry</i> , 1999 , 274, 23341-8	5.4	35
132	PPAR/Taffects pancreatic Itell mass and insulin secretion in mice. <i>Journal of Clinical Investigation</i> , 2012 , 122, 4105-17	15.9	35
131	Peroxisome proliferator-activated receptor beta/delta as a therapeutic target for metabolic diseases. Expert Opinion on Therapeutic Targets, 2005, 9, 861-73	6.4	34

(2014-1999)

130	Fatty acids, eicosanoids, and hypolipidemic agents regulate gene expression through direct binding to peroxisome proliferator-activated receptors. <i>Advances in Experimental Medicine and Biology</i> , 1999 , 447, 199-209	3.6	34
129	Roles of Peroxisome Proliferator-Activated Receptor In skeletal muscle physiology. <i>Biochimie</i> , 2017 , 136, 42-48	4.6	33
128	Peroxisome proliferator-activated receptor-beta as a target for wound healing drugs. <i>Expert Opinion on Therapeutic Targets</i> , 2004 , 8, 39-48	6.4	33
127	Myostatin augments muscle-specific ring finger protein-1 expression through an NF-kB independent mechanism in SMAD3 null muscle. <i>Molecular Endocrinology</i> , 2014 , 28, 317-30		32
126	The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain fatty acids. <i>Cell Reports</i> , 2013 , 5, 248-58	10.6	32
125	Genetic- or transforming growth factor-beta 1-induced changes in epidermal peroxisome proliferator-activated receptor beta/delta expression dictate wound repair kinetics. <i>Journal of Biological Chemistry</i> , 2005 , 280, 18163-70	5.4	32
124	Altered growth in male peroxisome proliferator-activated receptor gamma (PPARgamma) heterozygous mice: involvement of PPARgamma in a negative feedback regulation of growth hormone action. <i>Molecular Endocrinology</i> , 2004 , 18, 2363-77		32
123	Exploiting vulnerabilities of cancer by targeting nuclear receptors of stromal cells in tumor microenvironment. <i>Molecular Cancer</i> , 2019 , 18, 51	42.1	31
122	The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice. <i>Lipids in Health and Disease</i> , 2011 , 10, 128	4.4	31
121	Lack of Smad3 signaling leads to impaired skeletal muscle regeneration. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2012 , 303, E90-102	6	31
120	Combined simulation and mutagenesis analyses reveal the involvement of key residues for peroxisome proliferator-activated receptor alpha helix 12 dynamic behavior. <i>Journal of Biological Chemistry</i> , 2007 , 282, 9666-9677	5.4	31
119	A concerted kinase interplay identifies PPARgamma as a molecular target of ghrelin signaling in macrophages. <i>PLoS ONE</i> , 2009 , 4, e7728	3.7	30
118	Guiding ligands to nuclear receptors. <i>Cell</i> , 2007 , 129, 649-51	56.2	30
117	Peroxisome proliferator-activated receptor (PPAR)-beta as a target for wound healing drugs: what is possible?. <i>American Journal of Clinical Dermatology</i> , 2003 , 4, 523-30	7.1	30
116	Insights into the Role of PPAR価n NAFLD. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	29
115	Metronidazole Causes Skeletal Muscle Atrophy and Modulates Muscle Chronometabolism. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	29
114	Tau hyperphosphorylation and increased BACE1 and RAGE levels in the cortex of PPARÆhull mice. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2013 , 1832, 1241-8	6.9	29
113	Absence of intestinal PPAR laggravates acute infectious colitis in mice through a lipocalin-2-dependent pathway. <i>PLoS Pathogens</i> , 2014 , 10, e1003887	7.6	29

112	Microsomal triglyceride transfer protein promotes the secretion of Xenopus laevis vitellogenin A1. Journal of Biological Chemistry, 2005 , 280, 13902-5	5.4	29
111	Insights into the role of hepatocyte PPAR activity in response to fasting. <i>Molecular and Cellular Endocrinology</i> , 2018 , 471, 75-88	4.4	29
110	Determinants of vitellogenin B1 promoter architecture. HNF3 and estrogen responsive transcription within chromatin. <i>Journal of Biological Chemistry</i> , 2000 , 275, 28291-300	5.4	28
109	Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. <i>Cells</i> , 2020 , 9,	7.9	28
108	Glucocorticoid receptor-PPAR xis in fetal mouse liver prepares neonates for milk lipid catabolism. <i>ELife</i> , 2016 , 5,	8.9	28
107	The human estrogen receptor can regulate exogenous but not endogenous vitellogenin gene promoters in a Xenopus cell line. <i>Nucleic Acids Research</i> , 1988 , 16, 8291-305	20.1	27
106	Hepatic PPAR I s critical in the metabolic adaptation to sepsis. <i>Journal of Hepatology</i> , 2019 , 70, 963-973	13.4	26
105	Hepatocyte-specific deletion of Ppar promotes NAFLD in the context of obesity. <i>Scientific Reports</i> , 2020 , 10, 6489	4.9	25
104	Authorship in scientific publications: analysis and recommendations. <i>Swiss Medical Weekly</i> , 2015 , 145, w14108	3.1	25
103	PPARIModulates Long Chain Fatty Acid Processing in the Intestinal Epithelium. <i>International Journal of Molecular Sciences</i> , 2017 , 18,	6.3	24
102	Peroxisome proliferator-activated receptor Induces myogenesis by modulating myostatin activity. <i>Journal of Biological Chemistry</i> , 2012 , 287, 12935-51	5.4	23
101	Ribosomal protein L27 is identical in chick and rat. <i>Nucleic Acids Research</i> , 1991 , 19, 1337	20.1	23
100	cis- and trans-acting elements of the estrogen-regulated vitellogenin gene B1 of Xenopus laevis. <i>The Journal of Steroid Biochemistry</i> , 1989 , 34, 17-32		23
99	Linkage arrangement in the vitellogenin gene family of Xenopus laevis as revealed by gene segregation analysis. <i>Nucleic Acids Research</i> , 1986 , 14, 8723-34	20.1	23
98	Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. <i>Biomolecules</i> , 2020 , 10,	5.9	23
97	PPARs: nuclear receptors for fatty acids, eicosanoids, and xenobiotics. <i>Advances in Experimental Medicine and Biology</i> , 1999 , 469, 231-6	3.6	23
96	Electron-microscopic demonstration of terminal and internal initiation sites for cDNA synthesis on vitellogenin mRNA. <i>FEBS Journal</i> , 1978 , 86, 225-34		22
95	Heme-Regulated eIF2lkinase Modulates Hepatic FGF21 and Is Activated by PPAR/IDeficiency. Diabetes, 2016 , 65, 3185-99	0.9	22

94	The PPAR-microbiota-metabolic organ trilogy to fine-tune physiology. FASEB Journal, 2019, 33, 9706-9	730 9	21
93	Complementary intestinal mucosa and microbiota responses to caloric restriction. <i>Scientific Reports</i> , 2018 , 8, 11338	4.9	21
92	The Vi element. A transposon-like repeated DNA sequence interspersed in the vitellogenin locus of Xenopus laevis. <i>Journal of Molecular Biology</i> , 1985 , 186, 491-503	6.5	21
91	Transcription of single-copy vitellogenin gene of Xenopus involves expression of middle repetitive DNA. <i>Nature</i> , 1981 , 291, 429-31	50.4	21
90	PPAR: a Key Nuclear Factor in Nutrient / Gene Interactions? 1995 , 142-176		21
89	PPAR/Lameliorates fructose-induced insulin resistance in adipocytes by preventing Nrf2 activation. <i>Biochimica Et Biophysica Acta - Molecular Basis of Disease</i> , 2015 , 1852, 1049-58	6.9	20
88	PCR driven DNA-DNA competitive hybridization: a new method for sensitive differential cloning. <i>Nucleic Acids Research</i> , 1991 , 19, 4778	20.1	20
87	PPAR-Mactivation promotes phospholipid transfer protein expression. <i>Biochemical Pharmacology</i> , 2015 , 94, 101-8	6	19
86	PPARs and Microbiota in Skeletal Muscle Health and Wasting. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	18
85	Studying Wound Repair in the Mouse. Current Protocols in Mouse Biology, 2013, 3, 171-85	1.1	18
84	Promoter rearrangements cause species-specific hepatic regulation of the glyoxylate reductase/hydroxypyruvate reductase gene by the peroxisome proliferator-activated receptor alpha. <i>Journal of Biological Chemistry</i> , 2005 , 280, 24143-52	5.4	18
83	Peroxisome Proliferator-Activated Receptors and Caloric Restriction-Common Pathways Affecting Metabolism, Health, and Longevity. <i>Cells</i> , 2020 , 9,	7.9	18
82	Selective deletion of PPAR/IIn fibroblasts causes dermal fibrosis by attenuated LRG1 expression. <i>Cell Discovery</i> , 2018 , 4, 15	22.3	17
81	Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARÆDependent Vasodilator Pathway. <i>Hypertension</i> , 2018 , 71, 297-305	8.5	16
80	The coactivator PGC-1#egulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPAR/IIn sedentary mice fed a regular chow diet. <i>Diabetologia</i> , 2014 , 57, 2405-12	10.3	16
79	Collaborative Regulation of LRG1 by TGF-II and PPAR-III Modulates Chronic Pressure Overload-Induced Cardiac Fibrosis. <i>Circulation: Heart Failure</i> , 2019 , 12, e005962	7.6	16
78	Intestinal PPAR ignalling is required for sympathetic nervous system activation in response to caloric restriction. <i>Scientific Reports</i> , 2016 , 6, 36937	4.9	15
77	Enteric Microbiota?Gut?Brain Axis from the Perspective of Nuclear Receptors. <i>International Journal of Molecular Sciences</i> , 2018 , 19,	6.3	15

76	PPAR gamma: ally and foe in bone metabolism. <i>Cell Metabolism</i> , 2008 , 7, 188-90	24.6	15
75	The distribution of the dinucleotide CpG and cytosine methylation in the vitellogenin gene family. <i>Journal of Molecular Evolution</i> , 1987 , 25, 107-15	3.1	15
74	PPAR modulation of kinase-linked receptor signaling in physiology and disease. <i>Physiology</i> , 2010 , 25, 176-85	9.8	14
73	Decreased expression of peroxisome proliferator-activated receptor alpha and liver fatty acid binding protein after partial hepatectomy of rats and mice. <i>Liver International</i> , 2005 , 25, 33-40	7.9	14
72	A liver protein fraction regulating hormone-dependent in vitro transcription from the vitellogenin genes induces their expression in Xenopus oocytes. <i>Molecular Endocrinology</i> , 1991 , 5, 159-69		14
71	The Role of PPAR/IIn Melanoma Metastasis. International Journal of Molecular Sciences, 2018, 19,	6.3	14
7°	Inactivation of PPAR/Dadversely affects satellite cells and reduces postnatal myogenesis. <i>American Journal of Physiology - Endocrinology and Metabolism</i> , 2015 , 309, E122-31	6	13
69	Transcriptional regulation by triiodothyronine of the UDP-glucuronosyltransferase family 1 gene complex in rat liver. Comparison with induction by 3-methylcholanthrene. <i>Journal of Biological Chemistry</i> , 1997 , 272, 17171-5	5.4	13
68	An immuno-electron microscopical analysis of transcribing multinucleosomal templates: what happens to the histones?. <i>Journal of Molecular Biology</i> , 2000 , 299, 853-8	6.5	13
67	Fatty acid synthesis and PPARalpha hand in hand. <i>Chemistry and Biology</i> , 2009 , 16, 801-2		12
66	Nuclear receptor peroxisome proliferator activated receptor (PPAR) In skin wound healing and cancer. <i>European Journal of Dermatology</i> , 2015 , 25 Suppl 1, 4-11	0.8	12
65	Scattering of repetitive DNA sequences in the albumin and vitellogenin gene loci of Xenopus laevis. <i>Nucleic Acids Research</i> , 1983 , 11, 7701-16	20.1	11
64	A trilogy of glucocorticoid receptor actions. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 1115-7	11.5	10
63	Nuclear hormone receptors and mouse skin homeostasis: implication of PPARbeta. <i>Hormone Research in Paediatrics</i> , 2000 , 54, 263-8	3.3	10
62	Retinoid X receptor beta and peroxisome proliferator-activated receptor activate an estrogen response element. <i>Endocrine Reviews</i> , 1995 , 50, 409-16		10
61	ROS release by PPARÆhull fibroblasts reduces tumor load through epithelial antioxidant response. <i>Oncogene</i> , 2018 , 37, 2067-2078	9.2	8
60	Retention of the differentiated state by larvalXenopus liver cells in primary culture. Wilhelm Rouxks Archives of Developmental Biology, 1978, 185, 235-248		8
59	GDF15 mediates the metabolic effects of PPAR/ID activating AMPK. Cell Reports, 2021, 36, 109501	10.6	8

58	The emerging role of Nrf2 in dermatotoxicology. EMBO Molecular Medicine, 2014, 6, 431-3	12	7
57	Contributions of peroxisome proliferator-activated receptor I to skin health and disease. <i>Biomolecular Concepts</i> , 2013 , 4, 53-64	3.7	7
56	Immuno-electron microscopic identification of human estrogen receptor-DNA complexes at the estrogen-responsive element and in the first intron of a Xenopus vitellogenin gene. <i>Journal of Molecular Biology</i> , 1988 , 204, 217-20	6.5	7
55	The OEA effect on food intake is independent from the presence of PPARIn the intestine and the nodose ganglion, while the impact of OEA on energy expenditure requires the presence of PPARIn in mice. <i>Metabolism: Clinical and Experimental</i> , 2018 , 87, 13-17	12.7	7
54	Nutrigenomic foods. <i>Nutrafoods</i> , 2013 , 12, 3-12		6
53	PPARIInterprets a chromatin signature of pluripotency to promote embryonic differentiation at gastrulation. <i>PLoS ONE</i> , 2013 , 8, e83300	3.7	6
52	Integrating nuclear receptor mobility in models of gene regulation. <i>Nuclear Receptor Signaling</i> , 2006 , 4, e010	1	6
51	Physiological ligands of PPARs in inflammation and lipid homeostasis. Future Lipidology, 2006 , 1, 191-20	1	6
50	Gene transfer into Xenopus hepatocytes: transcriptional regulation by members of the nuclear receptor superfamily. <i>Molecular and Cellular Endocrinology</i> , 1994 , 101, 227-36	4.4	6
49	Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. <i>Nutrients</i> , 2020 , 12,	6.7	6
48	Hepatic Fasting-Induced PPARFActivity Does Not Depend on Essential Fatty Acids. <i>International Journal of Molecular Sciences</i> , 2016 , 17,	6.3	6
47	Exploring Extracellular Vesicles Biogenesis in Hypothalamic Cells through a Heavy Isotope Pulse/Trace Proteomic Approach. <i>Cells</i> , 2020 , 9,	7.9	5
46	Functional interaction between the estrogen receptor and CTF1: analysis of the vitellogenin gene B1 promoter in yeast. <i>Molecular Endocrinology</i> , 1998 , 12, 1525-41		5
45	PPARs and Tumor Microenvironment: The Emerging Roles of the Metabolic Master Regulators in Tumor Stromal-Epithelial Crosstalk and Carcinogenesis. <i>Cancers</i> , 2021 , 13,	6.6	5
44	LRG1 Promotes Metastatic Dissemination of Melanoma through Regulating EGFR/STAT3 Signalling. <i>Cancers</i> , 2021 , 13,	6.6	5
43	Depletion of Gram-Positive Bacteria Impacts Hepatic Biological Functions During the Light Phase. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	5
42	The PPARÆAMPK Connection in the Treatment of Insulin Resistance. <i>International Journal of Molecular Sciences</i> , 2021 , 22,	6.3	5
41	Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis <i>Cells</i> , 2022 , 11,	7.9	5

40	Deficiency in fibroblast PPAR/Ireduces nonmelanoma skin cancers in mice. <i>Cell Death and Differentiation</i> , 2020 , 27, 2668-2680	12.7	4
39	Beneficial effects of combinatorial micronutrition on body fat and atherosclerosis in mice. <i>Cardiovascular Research</i> , 2011 , 91, 732-41	9.9	4
38	PPAR Disruption: Cellular Mechanisms and Physiological Consequences. <i>Chimia</i> , 2008 , 62, 340-344	1.3	4
37	Identification of two steroid-responsive promoters of different strength controlled by the same estrogen-responsive element in the 5Rend region of the Xenopus laevis vitellogenin gene A1. <i>Molecular Endocrinology</i> , 1989 , 3, 1596-609		4
36	Factors promoting the establishment of primary cultures of liver cells fromXenopus larvae. Wilhelm Rouxks Archives of Developmental Biology, 1977, 182, 347-360		4
35	Adipose-Specific PPAREKnockout Mice Have Increased Lipogenesis by PASK-SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue <i>Cells</i> , 2021 , 11,	7.9	4
34	Peroxisome proliferator-activated receptor-las a target for wound healing drugs		4
33	Pharmacological PPAR/Lactivation upregulates VLDLR in hepatocytes. Claica E Investigacia En Arteriosclerosis, 2019 , 31, 111-118	1.4	4
32	Mechanistic definition of the cardiovascular mPGES-1/COX-2/ADMA axis. <i>Cardiovascular Research</i> , 2020 , 116, 1972-1980	9.9	4
31	Integrative study of diet-induced mouse models of NAFLD identifies PPARtas a sexually dimorphic drug target. <i>Gut</i> , 2021 ,	19.2	4
30	PPAR TAgonism Upregulates Forkhead Box A2 to Reduce Inflammation in C2C12 Myoblasts and in Skeletal Muscle. <i>International Journal of Molecular Sciences</i> , 2020 , 21,	6.3	3
29	Investigating the Role of PPAR如n Retinal Vascular Remodeling Using /-Deficient Mice. International Journal of Molecular Sciences, 2020 , 21,	6.3	3
28	Peroxisome proliferator-activated receptor L la master regulator of metabolic pathways in skeletal muscle. <i>Hormone Molecular Biology and Clinical Investigation</i> , 2010 , 4, 565-73	1.3	3
27	The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gut microbiota in mice. <i>Microbiome</i> , 2021 , 9, 93	16.6	3
26	The Potential of the FSP1cre- Mouse Model for Studying Juvenile NAFLD. <i>International Journal of Molecular Sciences</i> , 2019 , 20,	6.3	2
25	Roles of the peroxisome proliferator-activated receptor (PPAR) 由nd 如n skin wound healing. <i>International Congress Series</i> , 2007 , 1302, 45-52		2
24	PPARs in fetal and early postnatal development. <i>Advances in Developmental Biology (Amsterdam, Netherlands)</i> , 2006 , 16, 33-64		2
23	Selective Cooperation between Fatty Acid Binding Proteins and Peroxisome Proliferator-Activated Receptors in Regulating Transcription. <i>Molecular and Cellular Biology</i> , 2002 , 22, 6318-6318	4.8	2

(1991-2019)

22	Pharmacological PPAR/Dactivation upregulates VLDLR in hepatocytes. Claica E Investigacia En Arteriosclerosis (English Edition), 2019, 31, 111-118	0.3	1
21	Nuclear Hormone Receptors and Epidermal Differentiation 2015 , 91-106		1
20	Steroid Hormone and Related Receptors. Principles of Medical Biology, 1997, 255-296		1
19	Transposition of a bacterial IS3 element into a Xenopus Vi-element. <i>Nucleic Acids Research</i> , 1986 , 14, 7814	20.1	1
18	PPAR HA Key Regulator of Hepatic Energy Homeostasis in Health and Disease 2010 , 305-315		1
17	ATGL-dependent white adipose tissue lipolysis controls hepatocyte PPAR activity		1
16	Invalidation of the Transcriptional Modulator of Lipid Metabolism PPAR (In T Cells Prevents Age-Related Alteration of Body Composition and Loss of Endurance Capacity. <i>Frontiers in Physiology</i> , 2021 , 12, 587753	4.6	О
15	Nuclear HMGB1 protects from nonalcoholic fatty liver disease through negative regulation of liver X receptor <i>Science Advances</i> , 2022 , 8, eabg9055	14.3	O
14	The hepatocyte insulin receptor is required to program the liver clock and rhythmic gene expression <i>Cell Reports</i> , 2022 , 39, 110674	10.6	0
13	La activacifi de receptor activado por proliferadores peroxisfinicos [Imejora la resistencia a insulina inducida por IL-6 en clulas hepticas. Claica E Investigacia En Arteriosclerosis, 2012 , 24, 275-283	1.4	
12	PPARÆtene la respuesta inflamatoria inducida por lpidos en el coraze a trave de un mecanismo de transrepresio por antagonismo de receptores. <i>Clàica E Investigaci En Arteriosclerosis</i> , 2012 , 24, 131-140	1.4	
11	PPARs: Lipid Sensors that Regulate Cell Differentiation Processes 2006 , 117-131		
10	PPARs: Nuclear Hormone Receptors Involved in the Control of Inflammation419-435		
9	Peroxisome Proliferator Activated Receptors 2005 , 267-280		
8	Peroxisome Proliferator Activated Receptor Alpha Coordinates Intermediary Metabolism During Fasting. <i>Medical Science Symposia Series</i> , 2002 , 1-4		
7	Sensors for Metabolic Control. <i>Growth Hormone</i> , 2002 , 283-304		
6	Understanding the Coordinated Effects of PPARs on Lipid Metabolism Using Microarrays 2004 , 249-263	3	
5	Electron Microscope Visualisation of Protein-DNA Complexes 1991 , 153-161		

4 PPAR**∄ 998**, 235-256

3	PPAR/IIs not required by PGC-1#to enhance skeletal muscle oxidative metabolism (1164.3). <i>FASEB Journal</i> , 2014 , 28, 1164.3	0.9
2	"Every day I dream" An interview with the Rwandan Health Minister. <i>Swiss Medical Weekly</i> , 2016 , 146, w14316	3.1
1	Regulation of epithelialThesenchymal IL-1 signaling by PPAR/IIIs essential for skin homeostasis and wound healing. <i>Journal of Experimental Medicine</i> , 2009 , 206, i6-i6	16.6