Walter Wahli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5251596/publications.pdf

Version: 2024-02-01

2747 2544 39,335 298 96 192 citations h-index g-index papers 308 308 308 33304 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Peroxisome Proliferator-Activated Receptors: Nuclear Control of Metabolism*. Endocrine Reviews, 1999, 20, 649-688.	20.1	2,435
2	Roles of PPARs in health and disease. Nature, 2000, 405, 421-424.	27.8	1,782
3	Peroxisome proliferator–activated receptor α mediates the adaptive response to fasting. Journal of Clinical Investigation, 1999, 103, 1489-1498.	8.2	1,423
4	The PPARα–leukotriene B4 pathway to inflammation control. Nature, 1996, 384, 39-43.	27.8	1,329
5	Control of the peroxisomal \hat{l}^2 -oxidation pathway by a novel family of nuclear hormone receptors. Cell, 1992, 68, 879-887.	28.9	1,287
6	Fatty Acids, Eicosanoids, and Hypolipidemic Agents Identified as Ligands of Peroxisome Proliferator-Activated Receptors by Coactivator-Dependent Receptor Ligand Assay. Molecular Endocrinology, 1997, 11, 779-791.	3.7	1,070
7	International Union of Pharmacology. LXI. Peroxisome Proliferator-Activated Receptors. Pharmacological Reviews, 2006, 58, 726-741.	16.0	869
8	Transcriptional Regulation of Metabolism. Physiological Reviews, 2006, 86, 465-514.	28.8	749
9	From molecular action to physiological outputs: Peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Progress in Lipid Research, 2006, 45, 120-159.	11.6	656
10	PEROXISOME PROLIFERATOR-ACTIVATED RECEPTORS: A Nuclear Receptor Signaling Pathway in Lipid Physiology. Annual Review of Cell and Developmental Biology, 1996, 12, 335-363.	9.4	653
11	Antiapoptotic Role of PPAR \hat{I}^2 in Keratinocytes via Transcriptional Control of the Akt1 Signaling Pathway. Molecular Cell, 2002, 10, 721-733.	9.7	635
12	Peroxisome-proliferator-activated receptors and cancers: complex stories. Nature Reviews Cancer, 2004, 4, 61-70.	28.4	552
13	PPARs at the crossroads of lipid signaling and inflammation. Trends in Endocrinology and Metabolism, 2012, 23, 351-363.	7.1	537
14	Liver PPARα is crucial for whole-body fatty acid homeostasis and is protective against NAFLD. Gut, 2016, 65, 1202-1214.	12.1	494
15	Characterization of the Fasting-induced Adipose Factor FIAF, a Novel Peroxisome Proliferator-activated Receptor Target Gene. Journal of Biological Chemistry, 2000, 275, 28488-28493.	3.4	481
16	Selective Cooperation between Fatty Acid Binding Proteins and Peroxisome Proliferator-Activated Receptors in Regulating Transcription. Molecular and Cellular Biology, 2002, 22, 5114-5127.	2.3	448
17	Rat PPARs: Quantitative Analysis in Adult Rat Tissues and Regulation in Fasting and Refeeding. Endocrinology, 2001, 142, 4195-4202.	2.8	433
18	Intestinal antiinflammatory effect of 5-aminosalicylic acid is dependent on peroxisome proliferator–activated receptor-γ. Journal of Experimental Medicine, 2005, 201, 1205-1215.	8.5	428

#	Article	IF	CITATIONS
19	Attenuation of Colon Inflammation through Activators of the Retinoid X Receptor (Rxr)/Peroxisome Proliferator–Activated Receptor γ (Pparl³) Heterodimer. Journal of Experimental Medicine, 2001, 193, 827-838.	8.5	416
20	Peroxisome proliferator-activated receptors: insight into multiple cellular functions. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2000, 448, 121-138.	1.0	414
21	Differential Expression of Peroxisome Proliferator-Activated Receptor-α, -β, and -γ during Rat Embryonic Development*. Endocrinology, 1998, 139, 2748-2754.	2.8	413
22	Cyclooxygenase-2 Controls Energy Homeostasis in Mice by de Novo Recruitment of Brown Adipocytes. Science, 2010, 328, 1158-1161.	12.6	401
23	Impaired skin wound healing in peroxisome proliferator–activated receptor (PPAR)α and PPARβ mutant mice. Journal of Cell Biology, 2001, 154, 799-814.	5.2	388
24	Fatty Acids, Eicosanoids, and Hypolipidemic Agents Identified as Ligands of Peroxisome Proliferator-Activated Receptors by Coactivator-Dependent Receptor Ligand Assay. Molecular Endocrinology, 1997, 11, 779-791.	3.7	384
25	Critical roles of PPARbeta /delta in keratinocyte response to inflammation. Genes and Development, 2001, 15, 3263-3277.	5.9	373
26	The Fasting-induced Adipose Factor/Angiopoietin-like Protein 4 Is Physically Associated with Lipoproteins and Governs Plasma Lipid Levels and Adiposity. Journal of Biological Chemistry, 2006, 281, 934-944.	3.4	366
27	Nuclear Hormone Receptor Coregulators In Action: Diversity For Shared Tasks. Molecular Endocrinology, 2000, 14, 329-347.	3.7	350
28	Induction of the Acyl-Coenzyme A Synthetase Gene by Fibrates and Fatty Acids Is Mediated by a Peroxisome Proliferator Response Element in the C Promoter. Journal of Biological Chemistry, 1995, 270, 19269-19276.	3.4	344
29	PGC1α expression is controlled in skeletal muscles by PPARβ, whose ablation results in fiber-type switching, obesity, and type 2 diabetes. Cell Metabolism, 2006, 4, 407-414.	16.2	340
30	Peroxisome proliferator-activated receptor \hat{A} is required in mature white and brown adipocytes for their survival in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 4543-4547.	7.1	336
31	DNA Binding Properties of Peroxisome Proliferator-activated Receptor Subtypes on Various Natural Peroxisome Proliferator Response Elements. Journal of Biological Chemistry, 1997, 272, 25252-25259.	3.4	330
32	Reciprocal Regulation of Brain and Muscle Arnt-Like Protein 1 and Peroxisome Proliferator-Activated Receptor $\hat{I}\pm$ Defines a Novel Positive Feedback Loop in the Rodent Liver Circadian Clock. Molecular Endocrinology, 2006, 20, 1715-1727.	3.7	317
33	Polarity and Specific Sequence Requirements of Peroxisome Proliferator-activated Receptor (PPAR)/Retinoid X Receptor Heterodimer Binding to DNA. Journal of Biological Chemistry, 1997, 272, 20108-20117.	3.4	306
34	Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. FASEB Journal, 1991, 5, 2243-2249.	0.5	302
35	Nutrigenomics and nutrigenetics: the emerging faces of nutrition. FASEB Journal, 2005, 19, 1602-1616.	0.5	294
36	The Endocrine Disruptor Monoethyl-hexyl-phthalate Is a Selective Peroxisome Proliferator-activated Receptor Î ³ Modulator That Promotes Adipogenesis. Journal of Biological Chemistry, 2007, 282, 19152-19166.	3.4	294

#	Article	IF	CITATIONS
37	Expression of the Peroxisome Proliferator-activated Receptor \hat{l}_{\pm} Gene Is Stimulated by Stress and Follows a Diurnal Rhythm. Journal of Biological Chemistry, 1996, 271, 1764-1769.	3.4	291
38	The gut microbiota influences skeletal muscle mass and function in mice. Science Translational Medicine, $2019,11,.$	12.4	271
39	Sequence homologies in the region preceding the transcription initiation site of the liver estrogen-responsive vitellogenin and apo-VLDLII genes. Nucleic Acids Research, 1984, 12, 8611-8626.	14.5	254
40	Positive regulation of the peroxisomal \hat{l}^2 -oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR). Biology of the Cell, 1993, 77, 67-74.	2.0	253
41	The Direct Peroxisome Proliferator-activated Receptor Target Fasting-induced Adipose Factor (FIAF/PGAR/ANGPTL4) Is Present in Blood Plasma as a Truncated Protein That Is Increased by Fenofibrate Treatment. Journal of Biological Chemistry, 2004, 279, 34411-34420.	3.4	229
42	Vitellogenin in Xenopus laevis is encoded in a small family of genes. Cell, 1979, 16, 535-549.	28.9	228
43	Evolution and expression of vitellogenin genes. Trends in Genetics, 1988, 4, 227-232.	6.7	228
44	Do Peroxisome Proliferating Compounds Pose a Hepatocarcinogenic Hazard to Humans?. Regulatory Toxicology and Pharmacology, 1998, 27, 47-60.	2.7	212
45	Mechanisms of the Anti-Obesity Effects of Oxytocin in Diet-Induced Obese Rats. PLoS ONE, 2011, 6, e25565.	2.5	211
46	PPARα governs glycerol metabolism. Journal of Clinical Investigation, 2004, 114, 94-103.	8.2	207
47	A New Selective Peroxisome Proliferator-Activated Receptor \hat{I}^3 Antagonist with Antiobesity and Antidiabetic Activity. Molecular Endocrinology, 2002, 16, 2628-2644.	3.7	201
48	The peroxisome proliferatorâ€activated receptor α regulates amino acid metabolism. FASEB Journal, 2001, 15, 1971-1978.	0.5	198
49	Be Fit or Be Sick: Peroxisome Proliferator-Activated Receptors Are Down the Road. Molecular Endocrinology, 2004, 18, 1321-1332.	3.7	196
50	Dosage-Dependent Effects of Akt1/Protein Kinase Bα (PKBα) and Akt3/PKBγ on Thymus, Skin, and Cardiovascular and Nervous System Development in Mice. Molecular and Cellular Biology, 2005, 25, 10407-10418.	2.3	196
51	The European dimension for the mouse genome mutagenesis program. Nature Genetics, 2004, 36, 925-927.	21.4	195
52	Activation of Peroxisome Proliferator-Activated Receptors (PPARs) by Their Ligands and Protein Kinase A Activators. Molecular Endocrinology, 2000, 14, 1962-1975.	3.7	194
53	PixFRET, an ImageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microscopy Research and Technique, 2005, 68, 51-58.	2.2	193
54	Involvement of PPAR nuclear receptors in tissue injury and wound repair. Journal of Clinical Investigation, 2006, 116, 598-606.	8.2	192

#	Article	IF	Citations
55	The GO/G1 switch gene 2 is a novel PPAR target gene. Biochemical Journal, 2005, 392, 313-324.	3.7	190
56	Peroxisome proliferator-activated receptors: three isotypes for a multitude of functions. Current Opinion in Biotechnology, 1999, 10, 564-570.	6.6	184
57	Peroxisome proliferator-activated receptor agonists. Current Opinion in Chemical Biology, 1997, 1, 235-241.	6.1	182
58	High-fat diet modifies the PPAR- \hat{l}^3 pathway leading to disruption of microbial and physiological ecosystem in murine small intestine. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5934-E5943.	7.1	180
59	Differentiation of Trophoblast Giant Cells and Their Metabolic Functions Are Dependent on Peroxisome Proliferator-Activated Receptor $\hat{l}^2\hat{l}$. Molecular and Cellular Biology, 2006, 26, 3266-3281.	2.3	179
60	Identification of estrogen-responsive DNA sequences by transient expression experiments in a human breast cancer cell line. Nucleic Acids Research, 1986, 14, 8755-8770.	14.5	178
61	Peroxisome-Proliferator-Activated Receptor (PPAR)-Î ³ Activation Stimulates Keratinocyte Differentiation. Journal of Investigative Dermatology, 2004, 123, 305-312.	0.7	175
62	In vivo activation of PPAR target genes by RXR homodimers. EMBO Journal, 2004, 23, 2083-2091.	7.8	172
63	Crosstalk between peroxisome proliferator-activated receptor and VEGF stimulates cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 19069-19074.	7.1	170
64	PPARs in Diseases: Control Mechanisms of Inflammation. Current Medicinal Chemistry, 2005, 12, 2995-3009.	2.4	168
65	Peroxisome proliferator-activated receptors: finding the orphan a home. Molecular and Cellular Endocrinology, 1994, 100, 149-153.	3.2	161
66	Peroxisome proliferator-activated receptor ?/? activation inhibits hypertrophy in neonatal rat cardiomyocytes. Cardiovascular Research, 2005, 65, 832-841.	3.8	154
67	Peroxisome proliferator-activated receptors (PPARs) in skin health, repair and disease. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2007, 1771, 991-998.	2.4	153
68	Dual $\langle scp \rangle PPAR \langle scp \rangle \hat{l} \pm \hat{l}^3$ agonist saroglitazar improves liver histopathology and biochemistry in experimental $\langle scp \rangle NASH \langle scp \rangle$ models. Liver International, 2018, 38, 1084-1094.	3.9	153
69	PPAR Tissue Distribution and Interactions with Other Hormone-Signaling Pathways. Annals of the New York Academy of Sciences, 1996, 804, 231-251.	3.8	149
70	Peroxisome Proliferator-activated Receptor Mediates Cross-talk with Thyroid Hormone Receptor by Competition for Retinoid X Receptor. Journal of Biological Chemistry, 1995, 270, 18117-18122.	3.4	143
71	Differential involvement of peroxisome-proliferator-activated receptors $\hat{l}\pm$ and \hat{l} in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochemical Journal, 2001, 355, 481-488.	3.7	141
72	Peroxisome Proliferator-Activated Receptors Mediate Host Cell Proinflammatory Responses to <i>Pseudomonas aeruginosa</i> Autoinducer. Journal of Bacteriology, 2008, 190, 4408-4415.	2.2	137

#	Article	IF	CITATIONS
73	Rat PPARs: Quantitative Analysis in Adult Rat Tissues and Regulation in Fasting and Refeeding. Endocrinology, 2001, 142, 4195-4202.	2.8	135
74	Fat poetry: a kingdom for PPARγ. Cell Research, 2007, 17, 486-511.	12.0	127
75	Expression and Localization of PPARs in the Rat Ovary During Follicular Development and the Periovulatory Period. Endocrinology, 2001, 142, 4831-4838.	2.8	126
76	Precursor-product relationship between vitellogenin and the yolk proteins as derived from the complete sequence of aXenopusvitellogenin gene. Nucleic Acids Research, 1987, 15, 4737-4760.	14.5	123
77	Smad3 Deficiency in Mice Protects Against Insulin Resistance and Obesity Induced by a High-Fat Diet. Diabetes, 2011, 60, 464-476.	0.6	123
78	Loss of Egg Yolk Genes in Mammals and the Origin of Lactation and Placentation. PLoS Biology, 2008, 6, e63.	5.6	122
79	PPARα governs glycerol metabolism. Journal of Clinical Investigation, 2004, 114, 94-103.	8.2	121
80	Peroxisome proliferator-activated receptor- \hat{l}^2 signaling contributes to enhanced proliferation of hepatic stellate cells. Gastroenterology, 2003, 124, 184-201.	1.3	120
81	Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes. Journal of Steroid Biochemistry and Molecular Biology, 2005, 93, 99-105.	2.5	119
82	Nuclear Hormone Receptor Coregulators In Action: Diversity For Shared Tasks. Molecular Endocrinology, 2000, 14, 329-347.	3.7	118
83	PPAR expression and function during vertebrate development. International Journal of Developmental Biology, 2002, 46, 105-14.	0.6	117
84	Peroxisome Proliferator-activated Receptor \hat{I}^2 Regulates Acyl-CoA Synthetase 2 in Reaggregated Rat Brain Cell Cultures. Journal of Biological Chemistry, 1999, 274, 35881-35888.	3.4	114
85	Sex Difference in Hepatic Peroxisome Proliferator-Activated Receptor \hat{l}_{\pm} Expression: Influence of Pituitary and Gonadal Hormones. Endocrinology, 2003, 144, 101-109.	2.8	113
86	Comparative analysis of the structural organization of two closely related vitellogenin genes in X. laevis. Cell, 1980, 20, 107-117.	28.9	110
87	Activation of Peroxisome Proliferator–Activated Receptor β/δInhibits Lipopolysaccharide-Induced Cytokine Production in Adipocytes by Lowering Nuclear Factor-κB Activity via Extracellular Signal–Related Kinase 1/2. Diabetes, 2008, 57, 2149-2157.	0.6	108
88	Quantitation of vitellogenin messenger RNA in the liver of male xenopus toads during primary and secondary stimulation by estrogen. Cell, 1977, 11, 213-221.	28.9	107
89	Fluorescence Imaging Reveals the Nuclear Behavior of Peroxisome Proliferator-activated Receptor/Retinoid X Receptor Heterodimers in the Absence and Presence of Ligand*♦. Journal of Biological Chemistry, 2005, 280, 17880-17890.	3.4	106
90	The selective peroxisome proliferator-activated receptor alpha modulator (SPPARMα) paradigm: conceptual framework and therapeutic potential. Cardiovascular Diabetology, 2019, 18, 71.	6.8	104

#	Article	IF	CITATIONS
91	PPARs as Drug Targets to Modulate Inflammatory Responses?. Inflammation and Allergy: Drug Targets, 2004, 3, 361-375.	3.1	102
92	Peroxisome Proliferator-Activated Receptor \hat{l}^2/\hat{l} Exerts a Strong Protection from Ischemic Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2005, 16, 2395-2402.	6.1	102
93	Sumoylated PPARα mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. Journal of Clinical Investigation, 2009, 119, 3138-3148.	8.2	102
94	Differential Regulation of Vascular Endothelial Growth Factor Expression by Peroxisome Proliferator-activated Receptors in Bladder Cancer Cells. Journal of Biological Chemistry, 2002, 277, 23534-23543.	3.4	99
95	A Specific ChREBP and PPARî± Cross-Talk Is Required for the Glucose-Mediated FGF21 Response. Cell Reports, 2017, 21, 403-416.	6.4	99
96	Differential involvement of peroxisome-proliferator-activated receptors \hat{l}_{\pm} and \hat{l}' in fibrate and fatty-acid-mediated inductions of the gene encoding liver fatty-acid-binding protein in the liver and the small intestine. Biochemical Journal, 2001, 355, 481.	3.7	99
97	PPARÎ 2 / $^\circ$ Regulates Paneth Cell Differentiation Via Controlling the Hedgehog Signaling Pathway. Gastroenterology, 2006, 131, 538-553.	1.3	98
98	Regulation of epithelial–mesenchymal IL-1 signaling by PPARβ/δ is essential for skin homeostasis and wound healing. Journal of Cell Biology, 2009, 184, 817-831.	5.2	97
99	Role of the circadian clock gene Per2 in adaptation to cold temperature. Molecular Metabolism, 2013, 2, 184-193.	6.5	92
100	Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Scientific Reports, 2016, 6, 20127.	3.3	92
101	PPARs Mediate Lipid Signaling in Inflammation and Cancer. PPAR Research, 2008, 2008, 1-15.	2.4	91
102	PPARα Structure-Function Relationships Derived from Species-Specific Differences in Responsiveness to Hypolipidemic Agents. Biological Chemistry, 1997, 378, 651-656.	2.5	90
103	Retinoid X receptor and peroxisome proliferator-activated receptor activate an estrogen responsive gene independent of the estrogen receptor. Molecular and Cellular Endocrinology, 1997, 127, 27-40.	3.2	90
104	Pancreatic Islet Adaptation to Fasting Is Dependent on Peroxisome Proliferator-Activated Receptor \hat{l}_{\pm} Transcriptional Up-Regulation of Fatty Acid Oxidation. Endocrinology, 2005, 146, 375-382.	2.8	89
105	Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase. Cell Reports, 2018, 22, 760-773.	6.4	86
106	Smad3 signaling is required for satellite cell function and myogenic differentiation of myoblasts. Cell Research, 2011, 21, 1591-1604.	12.0	85
107	Peroxisome Proliferator-Activated Receptors and Lipid Metabolism. Annals of the New York Academy of Sciences, 1993, 684, 157-173.	3.8	83
108	The peroxisome proliferator-activated receptors at the cross-road of diet and hormonal signalling. Journal of Steroid Biochemistry and Molecular Biology, 1998, 65, 65-74.	2.5	83

#	Article	IF	CITATIONS
109	IL-13 induces expression of CD36 in human monocytes through PPARÎ ³ activation. European Journal of Immunology, 2007, 37, 1642-1652.	2.9	83
110	PPARÎ 2 /δ prevents endoplasmic reticulum stress-associated inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetologia, 2014, 57, 2126-2135.	6.3	83
111	Hepatocyte-specific deletion of Ppar $\hat{l}\pm$ promotes NAFLD in the context of obesity. Scientific Reports, 2020, 10, 6489.	3.3	80
112	Role of Prostacyclin versus Peroxisome Proliferator-Activated Receptor \hat{l}^2 Receptors in Prostacyclin Sensing by Lung Fibroblasts. American Journal of Respiratory Cell and Molecular Biology, 2006, 34, 242-246.	2.9	79
113	Oxidative Stress in NAFLD: Role of Nutrients and Food Contaminants. Biomolecules, 2020, 10, 1702.	4.0	79
114	Complementary DNA cloning of complement C8.beta. and its sequence homology to C9. Biochemistry, 1987, 26, 3551-3556.	2.5	78
115	Malignant Transformation of DMBA/TPA-Induced Papillomas and Nevi in the Skin of Mice Selectively Lacking Retinoid-X-Receptor α in Epidermal Keratinocytes. Journal of Investigative Dermatology, 2007, 1250-1260.	0.7	78
116	Peroxisome proliferator-activated receptors A link between endocrinology and nutrition?. Trends in Endocrinology and Metabolism, 1993, 4, 291-296.	7.1	77
117	Hepatic regulation of VLDL receptor by PPARÎ 2 Î $^\circ$ and FGF21 modulates non-alcoholic fatty liver disease. Molecular Metabolism, 2018, 8, 117-131.	6.5	77
118	Peroxisome proliferator-activated receptors (PPARs): from metabolic control to epidermal wound healing. Swiss Medical Weekly, 2002, 132, 83-91.	1.6	77
119	Peroxisome Proliferator-Activated Receptors and Their Novel Ligands as Candidates for the Treatment of Non-Alcoholic Fatty Liver Disease. Cells, 2020, 9, 1638.	4.1	76
120	Essential role of Smad3 in the inhibition of inflammation-induced PPARβ/Î′ expression. EMBO Journal, 2004, 23, 4211-4221.	7.8	75
121	Peroxisome Proliferator-Activated Receptor-α-Null Mice Have Increased White Adipose Tissue Glucose Utilization, GLUT4, and Fat Mass: Role in Liver and Brain. Endocrinology, 2006, 147, 4067-4078.	2.8	73
122	The nuclear hormone receptor PPAR $\hat{1}^3$ counteracts vascular calcification by inhibiting Wnt5a signalling in vascular smooth muscle cells. Nature Communications, 2012, 3, 1077.	12.8	73
123	Vertebrate and nematode genes coding for yolk proteins are derived from a common ancestor. Biochemistry, 1987, 26, 6397-6402.	2.5	69
124	A Growth Hormone-Releasing Peptide that Binds Scavenger Receptor CD36 and Ghrelin Receptor Up-Regulates Sterol Transporters and Cholesterol Efflux in Macrophages through a Peroxisome Proliferator-Activated Receptor Î ³ -Dependent Pathway. Molecular Endocrinology, 2006, 20, 3165-3178.	3.7	69
125	Activation of Peroxisome Proliferator-Activated Receptors (PPARs) by Their Ligands and Protein Kinase A Activators. Molecular Endocrinology, 2000, 14, 1962-1975.	3.7	67
126	The anti-apoptotic role of PPAR \hat{l}^2 contributes to efficient skin wound healing. Journal of Steroid Biochemistry and Molecular Biology, 2003, 85, 257-265.	2.5	66

#	Article	IF	CITATIONS
127	The Interleukin-1 receptor antagonist is a direct target gene of PPARα in liver. Journal of Hepatology, 2007, 46, 869-877.	3.7	66
128	PPARÎ 2 /δactivation blocks lipid-induced inflammatory pathways in mouse heart and human cardiac cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2011, 1811, 59-67.	2.4	66
129	Size, Complexity and Abundance of a Specific Poly(A)-Containing RNA of Liver from Male Xenopus Induced to Vitellogenin Synthesis by Estrogen. FEBS Journal, 1976, 66, 457-465.	0.2	65
130	Activation of the Mouse TATA-less and Human TATA-Containing UDP-Glucuronosyltransferase <i>1A1</i> Promoters by Hepatocyte Nuclear Factor 1. Molecular Pharmacology, 1999, 56, 526-536.	2.3	65
131	Atherosclerotic mice exhibit systemic inflammation in periadventitial and visceral adipose tissue, liver, and pancreatic islets. Atherosclerosis, 2009, 207, 360-367.	0.8	65
132	Peroxisome proliferator activated receptor agonists. Exs, 2000, 89, 141-151.	1.4	65
133	Functional Interactions between the Estrogen Receptor and the Transcription Activator Sp1 Regulate the Estrogen-dependent Transcriptional Activity of the Vitellogenin A1 ioPromoter. Journal of Biological Chemistry, 1997, 272, 18250-18260.	3.4	64
134	Activation of Peroxisome Proliferator–Activated Receptor-β/-Î′ (PPAR-β/-Î′) Ameliorates Insulin Signaling and Reduces SOCS3 Levels by Inhibiting STAT3 in Interleukin-6–Stimulated Adipocytes. Diabetes, 2011, 60, 1990-1999.	0.6	64
135	Application of recombinant DNA technology to questions of developmental biology: A review. Developmental Biology, 1979, 69, 305-328.	2.0	63
136	Proline- and acidic amino acid-rich basic leucine zipper proteins modulate peroxisome proliferator-activated receptor \hat{l}_{\pm} (PPAR \hat{l}_{\pm}) activity. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4794-4799.	7.1	63
137	GW501516-activated PPARβ/δ promotes liver fibrosis via p38-JNK MAPK-induced hepatic stellate cell proliferation. Cell and Bioscience, 2012, 2, 34.	4.8	63
138	Cloning and characterization of synthetic sequences from the Xenopus laevis vitellogenin structural gene. Developmental Biology, 1978, 67, 371-383.	2.0	61
139	Kinase signaling cascades that modulate peroxisome proliferator-activated receptors. Current Opinion in Cell Biology, 2005, 17, 216-222.	5.4	61
140	The Nuclear Hormone Receptor Peroxisome Proliferator-Activated Receptor $\hat{l}^2\hat{l}$ Potentiates Cell Chemotactism, Polarization, and Migration. Molecular and Cellular Biology, 2007, 27, 7161-7175.	2.3	60
141	Sex differences in nuclear receptor-regulated liver metabolic pathways. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 964-973.	3.8	60
142	PPAR \hat{l}^2 regulates vitamin A metabolism-related gene expression in hepatic stellate cells undergoing activation. Journal of Lipid Research, 2003, 44, 280-295.	4.2	58
143	PPARÎ 2 / $\hat{\Gamma}$ attenuates palmitate-induced endoplasmic reticulum stress and induces autophagic markers in human cardiac cells. International Journal of Cardiology, 2014, 174, 110-118.	1.7	58
144	Transcriptional control of physiological and pathological processes by the nuclear receptor PPARβ/δ. Progress in Lipid Research, 2016, 64, 98-122.	11.6	58

#	Article	IF	Citations
145	Epithelium-Mesenchyme Interactions Control the Activity of Peroxisome Proliferator-Activated Receptor β/δ during Hair Follicle Development. Molecular and Cellular Biology, 2005, 25, 1696-1712.	2.3	57
146	Roles of Peroxisome Proliferator-Activated Receptor $\hat{l}^2\hat{l}$ in skeletal muscle physiology. Biochimie, 2017, 136, 42-48.	2.6	57
147	Exploiting vulnerabilities of cancer by targeting nuclear receptors of stromal cells in tumor microenvironment. Molecular Cancer, 2019, 18, 51.	19.2	57
148	Amphibian albumins as members of the albumin, alpha-fetoprotein, vitamin D-binding protein multigene family. Journal of Molecular Evolution, 1989, 29, 344-354.	1.8	55
149	Impaired expression of NADH dehydrogenase subunit 1 and PPARÎ 3 coactivator-1 in skeletal muscle of ZDF rats. Journal of Lipid Research, 2004, 45, 113-123.	4.2	55
150	Stage-specific Integration of Maternal and Embryonic Peroxisome Proliferator-activated Receptor $\hat{\Gamma}$ Signaling Is Critical to Pregnancy Success. Journal of Biological Chemistry, 2007, 282, 37770-37782.	3.4	55
151	Synthetic and natural Peroxisome Proliferator-Activated Receptor (PPAR) agonists as candidates for the therapy of the metabolic syndrome. Expert Opinion on Therapeutic Targets, 2017, 21, 333-348.	3.4	54
152	Hepatic PPARα is critical in the metabolic adaptation to sepsis. Journal of Hepatology, 2019, 70, 963-973.	3.7	53
153	Regional variations in ABC transporter expression along the mouse intestinal tract. Physiological Genomics, 2004, 17, 11-20.	2.3	52
154	Functions of the Peroxisome Proliferator-Activated Receptor (PPAR) \hat{l}_{2} in Skin Homeostasis, Epithelial Repair, and Morphogenesis. Journal of Investigative Dermatology Symposium Proceedings, 2006, 11, 30-35.	0.8	51
155	Peroxisome proliferator-activated receptors $\hat{l}^2 \hat{l}'$: emerging roles for a previously neglected third family member. Current Opinion in Lipidology, 2003, 14, 129-135.	2.7	50
156	Src is activated by the nuclear receptor peroxisome proliferatorâ€activated receptor β∫l´ in ultraviolet radiationâ€induced skin cancer. EMBO Molecular Medicine, 2014, 6, 80-98.	6.9	50
157	PPARs and Microbiota in Skeletal Muscle Health and Wasting. International Journal of Molecular Sciences, 2020, 21, 8056.	4.1	50
158	Hepatic Deficiency in Transcriptional Cofactor TBL1 Promotes Liver Steatosis and Hypertriglyceridemia. Cell Metabolism, 2011, 13, 389-400.	16.2	49
159	New insights into the role of PPARs. Prostaglandins Leukotrienes and Essential Fatty Acids, 2011, 85, 235-243.	2.2	49
160	Evolution of vitellogeain genes: comparative analysis of the nucleotide sequences downstream of the transcription initiation site of fourXenopus laevisand one chicken gene. Nucleic Acids Research, 1984, 12, 8595-8609.	14.5	47
161	Functions of peroxisome proliferator-activated receptors (PPAR) in skin homeostasis. Lipids, 2004, 39, 1093-1099.	1.7	47
162	The PPAR–microbiota–metabolic organ trilogy to fineâ€ŧune physiology. FASEB Journal, 2019, 33, 9706-9730.	0.5	46

#	Article	IF	CITATIONS
163	The Peroxisomal Enzyme L-PBE Is Required to Prevent the Dietary Toxicity of Medium-Chain Fatty Acids. Cell Reports, 2013, 5, 248-258.	6.4	45
164	Metronidazole Causes Skeletal Muscle Atrophy and Modulates Muscle Chronometabolism. International Journal of Molecular Sciences, 2018, 19, 2418.	4.1	45
165	PPARÎ 2 /δ affects pancreatic Î 2 cell mass and insulin secretion in mice. Journal of Clinical Investigation, 2012, 122, 4105-4117.	8.2	45
166	VlteBogtnin B2 gene inXenopus laevis: Isolation, in vitrotranscription and relation to other vitellogenin genes. Nucleic Acids Research, 1983, 11, 2979-2997.	14.5	44
167	Chemical Probes That Differentially Modulate Peroxisome Proliferator-activated Receptor α and BLTR, Nuclear and Cell Surface Receptors for Leukotriene B4. Journal of Biological Chemistry, 1999, 274, 23341-23348.	3.4	43
168	PPAR \hat{I}^3 Modulates Long Chain Fatty Acid Processing in the Intestinal Epithelium. International Journal of Molecular Sciences, 2017, 18, 2559.	4.1	43
169	Transcriptional Repression of Peroxisome Proliferator-activated Receptor \hat{l}^2/\hat{l} in Murine Keratinocytes by CCAAT/Enhancer-binding Proteins*. Journal of Biological Chemistry, 2005, 280, 38700-38710.	3.4	42
170	Association with Coregulators Is the Major Determinant Governing Peroxisome Proliferator-activated Receptor Mobility in Living Cells. Journal of Biological Chemistry, 2007, 282, 4417-4426.	3.4	42
171	Lack of Smad3 signaling leads to impaired skeletal muscle regeneration. American Journal of Physiology - Endocrinology and Metabolism, 2012, 303, E90-E102.	3.5	42
172	Insights into the Role of PPARβ/δ in NAFLD. International Journal of Molecular Sciences, 2018, 19, 1893.	4.1	42
173	GDF15 mediates the metabolic effects of PPARÎ 2 Î $^\circ$ by activating AMPK. Cell Reports, 2021, 36, 109501.	6.4	41
174	Peroxisome proliferator-activated receptor- \hat{l}^2 as a target for wound healing drugs. Expert Opinion on Therapeutic Targets, 2004, 8, 39-48.	3.4	40
175	Lack of hypotriglyceridemic effect of gemfibrozil as a consequence of age-related changes in rat liver PPARα. Biochemical Pharmacology, 2004, 67, 157-166.	4.4	40
176	Insights into the role of hepatocyte PPARÎ \pm activity in response to fasting. Molecular and Cellular Endocrinology, 2018, 471, 75-88.	3.2	40
177	Isolation and Translation in vitro of Four Related Vitellogenin mRNAs of Estrogen-Stimulated Xenopus laevis. FEBS Journal, 1980, 105, 17-24.	0.2	39
178	Peroxisome proliferator-activated receptor $\hat{l}^2\hat{l}$ as a therapeutic target for metabolic diseases. Expert Opinion on Therapeutic Targets, 2005, 9, 861-873.	3.4	39
179	Peroxisome Proliferator-Activated Receptors and Caloric Restriction—Common Pathways Affecting Metabolism, Health, and Longevity. Cells, 2020, 9, 1708.	4.1	39
180	Adipose Tissue Integrity as a Prerequisite for Systemic Energy Balance. Journal of Biological Chemistry, 2007, 282, 29946-29957.	3.4	38

#	Article	IF	Citations
181	Guiding Ligands to Nuclear Receptors. Cell, 2007, 129, 649-651.	28.9	38
182	PPARαIs Required for PPARÎAction in Regulation of Body Weight and Hepatic Steatosis in Mice. PPAR Research, 2015, 2015, 1-15.	2.4	38
183	Tau hyperphosphorylation and increased BACE1 and RAGE levels in the cortex of PPARβ/δ-null mice. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1241-1248.	3.8	37
184	Glucocorticoid receptor-PPARÎ \pm axis in fetal mouse liver prepares neonates for milk lipid catabolism. ELife, 2016, 5, .	6.0	37
185	Complementary intestinal mucosa and microbiota responses to caloric restriction. Scientific Reports, 2018, 8, 11338.	3.3	37
186	Fatty Acids, Eicosanoids, and Hypolipidemic Agents Regulate Gene Expression Through Direct Binding to Peroxisome Proliferator-Activated Receptors. Advances in Experimental Medicine and Biology, 1999, 447, 199-209.	1.6	37
187	Genetic- or Transforming Growth Factor- \hat{l}^21 -induced Changes in Epidermal Peroxisome Proliferator-activated Receptor $\hat{l}^2(\hat{l})$ Expression Dictate Wound Repair Kinetics. Journal of Biological Chemistry, 2005, 280, 18163-18170.	3.4	36
188	Myostatin Augments Muscle-Specific Ring Finger Protein-1 Expression Through an NF-kB Independent Mechanism in SMAD3 Null Muscle. Molecular Endocrinology, 2014, 28, 317-330.	3.7	36
189	Role of Dietary Supplements and Probiotics in Modulating Microbiota and Bone Health: The Gut-Bone Axis. Cells, 2022, 11, 743.	4.1	36
190	Altered Growth in Male Peroxisome Proliferator-Activated Receptor \hat{l}^3 (PPAR \hat{l}^3) Heterozygous Mice: Involvement of PPAR \hat{l}^3 in a Negative Feedback Regulation of Growth Hormone Action. Molecular Endocrinology, 2004, 18, 2363-2377.	3.7	35
191	The inhibition of fat cell proliferation by n-3 fatty acids in dietary obese mice. Lipids in Health and Disease, 2011, 10, 128.	3.0	35
192	Determinants of Vitellogenin B1 Promoter Architecture. Journal of Biological Chemistry, 2000, 275, 28291-28300.	3.4	34
193	A Concerted Kinase Interplay Identifies PPARÎ ³ as a Molecular Target of Ghrelin Signaling in Macrophages. PLoS ONE, 2009, 4, e7728.	2.5	34
194	Absence of Intestinal PPARγ Aggravates Acute Infectious Colitis in Mice through a Lipocalin-2–Dependent Pathway. PLoS Pathogens, 2014, 10, e1003887.	4.7	34
195	PPARs and Tumor Microenvironment: The Emerging Roles of the Metabolic Master Regulators in Tumor Stromal–Epithelial Crosstalk and Carcinogenesis. Cancers, 2021, 13, 2153.	3.7	34
196	Peroxisome Proliferator-Activated Receptor (PPAR)-?? as a Target for Wound Healing Drugs. American Journal of Clinical Dermatology, 2003, 4, 523-530.	6.7	33
197	Combined Simulation and Mutagenesis Analyses Reveal the Involvement of Key Residues for Peroxisome Proliferator-activated Receptorl± Helix 12 Dynamic Behavior. Journal of Biological Chemistry, 2007, 282, 9666-9677.	3.4	33
198	Adipose-Specific PPARα Knockout Mice Have Increased Lipogenesis by PASK–SREBP1 Signaling and a Polarity Shift to Inflammatory Macrophages in White Adipose Tissue. Cells, 2022, 11, 4.	4.1	33

#	Article	IF	CITATIONS
199	Microsomal Triglyceride Transfer Protein Promotes the Secretion of Xenopus laevis Vitellogenin A1. Journal of Biological Chemistry, 2005, 280, 13902-13905.	3.4	32
200	Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARÎ 2 /Î 2 -Dependent Vasodilator Pathway. Hypertension, 2018, 71, 297-305.	2.7	32
201	Heme-Regulated elF2α Kinase Modulates Hepatic FGF21 and Is Activated by PPARβĴδDeficiency. Diabetes, 2016, 65, 3185-3199.	0.6	31
202	The human estrogen receptor can regulate exogenous but not endogenous vitellogenin gene promoters in aXenopuscell line. Nucleic Acids Research, 1988, 16, 8291-8305.	14.5	30
203	Authorship in scientific publications: analysis and recommendations. Swiss Medical Weekly, 2015, 145, w14108.	1.6	30
204	Collaborative Regulation of LRG1 by TGF-β1 and PPAR-β∫δ Modulates Chronic Pressure Overload–Induced Cardiac Fibrosis. Circulation: Heart Failure, 2019, 12, e005962.	3.9	29
205	Peroxisome Proliferator-activated Receptor \hat{l}^2/\hat{l}^2 Induces Myogenesis by Modulating Myostatin Activity. Journal of Biological Chemistry, 2012, 287, 12935-12956.	3.4	28
206	Selective deletion of PPARÎ 2 Î $^\circ$ in fibroblasts causes dermal fibrosis by attenuated LRG1 expression. Cell Discovery, 2018, 4, 15.	6.7	28
207	Cis- and trans-acting elements of the estrogen-regulated vitellogenin gene B1 of Xenopus laevis. The Journal of Steroid Biochemistry, 1989, 34, 17-32.	1.1	27
208	Studying Wound Repair in the Mouse. Current Protocols in Mouse Biology, 2013, 3, 171-185.	1.2	26
209	Integrative study of diet-induced mouse models of NAFLD identifies PPARα as a sexually dimorphic drug target. Gut, 2022, 71, 807-821.	12.1	26
210	Ppars: Nuclear Receptors for Fatty Acids Eicosanoids, and Xenobiotics. Advances in Experimental Medicine and Biology, 1999, 469, 231-236.	1.6	26
211	Linkage arrangement in the vitellogenin gene family of Xenopus laevisas revealed by gene segregation analysis. Nucleic Acids Research, 1986, 14, 8723-8734.	14.5	24
212	Transcription of single-copy vitellogenin gene of Xenopus involves expression of middle repetitive DNA. Nature, 1981, 291, 429-431.	27.8	23
213	The Vi element. Journal of Molecular Biology, 1985, 186, 491-503.	4.2	23
214	Ribosomal protein L27 is identical in chick and rat. Nucleic Acids Research, 1991, 19, 1337-1337.	14.5	23
215	PPAR- \hat{l}^2/\hat{l}^2 activation promotes phospholipid transfer protein expression. Biochemical Pharmacology, 2015, 94, 101-108.	4.4	23
216	Electron-Microscopic Demonstration of Terminal and Internal Initiation Sites for cDNA Synthesis on Vitellogenin mRNA. FEBS Journal, 1978, 86, 225-234.	0.2	22

#	Article	IF	CITATIONS
217	PCR driven DNA-DNA competitive hybridization: a new method for sensitive differential cloning. Nucleic Acids Research, 1991, 19, 4778-4778.	14.5	22
218	Promoter Rearrangements Cause Species-specific Hepatic Regulation of the Glyoxylate Reductase/Hydroxypyruvate Reductase Gene by the Peroxisome Proliferator-activated Receptor α. Journal of Biological Chemistry, 2005, 280, 24143-24152.	3.4	21
219	PPARβ δ ameliorates fructose-induced insulin resistance in adipocytes by preventing Nrf2 activation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1049-1058.	3.8	21
220	Enteric Microbiota–Gut–Brain Axis from the Perspective of Nuclear Receptors. International Journal of Molecular Sciences, 2018, 19, 2210.	4.1	21
221	Intestinal PPAR \hat{I}^3 signalling is required for sympathetic nervous system activation in response to caloric restriction. Scientific Reports, 2016, 6, 36937.	3.3	20
222	PPAR Modulation of Kinase-Linked Receptor Signaling in Physiology and Disease. Physiology, 2010, 25, 176-185.	3.1	19
223	PPARÎ ³ : Ally and Foe in Bone Metabolism. Cell Metabolism, 2008, 7, 188-190.	16.2	18
224	Nuclear receptor peroxisome proliferator activated receptor (PPAR) \hat{l}^2/\hat{l} in skin wound healing and cancer. European Journal of Dermatology, 2015, 25, 4-11.	0.6	18
225	The coactivator PGC-1α regulates skeletal muscle oxidative metabolism independently of the nuclear receptor PPARβ/δ in sedentary mice fed a regular chow diet. Diabetologia, 2014, 57, 2405-2412.	6.3	17
226	The Role of PPARβ/δ in Melanoma Metastasis. International Journal of Molecular Sciences, 2018, 19, 2860.	4.1	17
227	The PPARβ/δ-AMPK Connection in the Treatment of Insulin Resistance. International Journal of Molecular Sciences, 2021, 22, 8555.	4.1	17
228	The distribution of the dinucleotide CpG and cytosine methylation in the vitellogenin gene family. Journal of Molecular Evolution, 1987, 25, 107-115.	1.8	16
229	Decreased expression of peroxisome proliferatorâ€activated receptor α and liver fatty acid binding protein after partial hepatectomy of rats and mice. Liver International, 2005, 25, 33-40.	3.9	16
230	Inactivation of PPARÎ 2 δ adversely affects satellite cells and reduces postnatal myogenesis. American Journal of Physiology - Endocrinology and Metabolism, 2015, 309, E122-E131.	3.5	16
231	Mechanistic definition of the cardiovascular mPGES-1/COX-2/ADMA axis. Cardiovascular Research, 2020, 116, 1972-1980.	3.8	16
232	Transcriptional Regulation by Triiodothyronine of the UDP-glucuronosyltransferase Family 1 Gene Complex in Rat Liver. Journal of Biological Chemistry, 1997, 272, 17171-17175.	3.4	15
233	A trilogy of glucocorticoid receptor actions. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1115-1117.	7.1	15
234	Peroxisome Proliferator-Activated Receptors as Molecular Links between Caloric Restriction and Circadian Rhythm. Nutrients, 2020, 12, 3476.	4.1	15

#	Article	IF	Citations
235	LRG1 Promotes Metastatic Dissemination of Melanoma through Regulating EGFR/STAT3 Signalling. Cancers, 2021, 13, 3279.	3.7	15
236	A Liver Protein Fraction Regulating Hormone-Dependentin VitroTranscription from the Vitellogenin Genes Induces Their Expression in Xenopus Oocytes. Molecular Endocrinology, 1991, 5, 159-169.	3.7	14
237	Fatty Acid Synthesis and PPARα Hand in Hand. Chemistry and Biology, 2009, 16, 801-802.	6.0	14
238	ROS release by PPARβ/δ-null fibroblasts reduces tumor load through epithelial antioxidant response. Oncogene, 2018, 37, 2067-2078.	5.9	14
239	An immuno-electron microscopical analysis of transcribing multinucleosomal templates: what happens to the histones? 1 1Edited by W. Baumeister. Journal of Molecular Biology, 2000, 299, 853-858.	4.2	13
240	Retinoid X Receptor \hat{l}^2 and Peroxisome Proliferator- Activated Receptor Activate an Estrogen Response Element. , 1995, 50, 409-416.		12
241	The hepatocyte insulin receptor is required to program the liver clock and rhythmic gene expression. Cell Reports, 2022, 39, 110674.	6.4	12
242	Scattering of repetitive DNA sequences in the albumin and vitellogenin gene loci of Xenopus laevis. Nucleic Acids Research, 1983, 11, 7701-7716.	14.5	11
243	The emerging role of N rf2 in dermatotoxicology. EMBO Molecular Medicine, 2014, 6, 431-433.	6.9	11
244	The OEA effect on food intake is independent from the presence of PPARÎ \pm in the intestine and the nodose ganglion, while the impact of OEA on energy expenditure requires the presence of PPARÎ \pm in mice. Metabolism: Clinical and Experimental, 2018, 87, 13-17.	3.4	11
245	Exploring Extracellular Vesicles Biogenesis in Hypothalamic Cells through a Heavy Isotope Pulse/Trace Proteomic Approach. Cells, 2020, 9, 1320.	4.1	11
246	The pregnane X receptor drives sexually dimorphic hepatic changes in lipid and xenobiotic metabolism in response to gut microbiota in mice. Microbiome, 2021, 9, 93.	11.1	11
247	Immuno-electron microscopic identification of human estrogen receptor-DNA complexes at the estrogen-responsive element and in the first intron of a Xenopus vitellogenin gene. Journal of Molecular Biology, 1988, 204, 217-220.	4.2	10
248	Nuclear Hormone Receptors and Mouse Skin Homeostasis: Implication of PPARÎ ² . Hormone Research in Paediatrics, 2000, 54, 263-268.	1.8	10
249	Contributions of peroxisome proliferator-activated receptor \hat{I}^2/\hat{I} to skin health and disease. Biomolecular Concepts, 2013, 4, 53-64.	2.2	10
250	Deficiency in fibroblast PPARβ/δ reduces nonmelanoma skin cancers in mice. Cell Death and Differentiation, 2020, 27, 2668-2680.	11.2	10
251	PPARÎ 2 /δ Agonism Upregulates Forkhead Box A2 to Reduce Inflammation in C2C12 Myoblasts and in Skeletal Muscle. International Journal of Molecular Sciences, 2020, 21, 1747.	4.1	10
252	Retention of the differentiated state by larvalXenopus liver cells in primary culture. Wilhelm Roux's Archives of Developmental Biology, 1978, 185, 235-248.	1.4	8

#	Article	IF	Citations
253	Integrating nuclear receptor mobility in models of gene regulation. Nuclear Receptor Signaling, 2006, 4, nrs.04010.	1.0	8
254	Physiological ligands of PPARs in inflammation and lipid homeostasis. Future Lipidology, 2006, 1, 191-201.	0.5	8
255	Hepatic Fasting-Induced PPARα Activity Does Not Depend on Essential Fatty Acids. International Journal of Molecular Sciences, 2016, 17, 1624.	4.1	8
256	Depletion of Gram-Positive Bacteria Impacts Hepatic Biological Functions During the Light Phase. International Journal of Molecular Sciences, 2019, 20, 812.	4.1	8
257	Functional Interaction between the Estrogen Receptor and CTF1: Analysis of the Vitellogenin Gene B1 Promoter in Yeast. Molecular Endocrinology, 1998, 12, 1525-1541.	3.7	7
258	Nutrigenomic foods. Nutrafoods, 2013, 12, 3-12.	0.5	7
259	PPAR \hat{l}^2 Interprets a Chromatin Signature of Pluripotency to Promote Embryonic Differentiation at Gastrulation. PLoS ONE, 2013, 8, e83300.	2.5	7
260	Nuclear HMGB1 protects from nonalcoholic fatty liver disease through negative regulation of liver X receptor. Science Advances, 2022, 8, eabg9055.	10.3	7
261	PPARs as Key Mediators in the Regulation of Metabolism and Inflammation. International Journal of Molecular Sciences, 2022, 23, 5025.	4.1	7
262	Gene transfer into Xenopus hepatocytes: transcriptional regulation by members of the nuclear receptor superfamily. Molecular and Cellular Endocrinology, 1994, 101, 227-236.	3.2	6
263	Investigating the Role of PPARβ/δ in Retinal Vascular Remodeling Using Pparβ/δ-Deficient Mice. International Journal of Molecular Sciences, 2020, 21, 4403.	4.1	6
264	Pharmacological PPARÎ 2 /δ activation upregulates VLDLR in hepatocytes. ClÃnica E InvestigaciÃ 3 n En Arteriosclerosis, 2019, 31, 111-118.	0.8	6
265	Identification of Two Steroid-Responsive Promoters of Different Strength Controlled by the Same Estrogen-Responsive Element in the 5′-End Region of theXenopus laevisVitellogenin Gene A1. Molecular Endocrinology, 1989, 3, 1596-1609.	3.7	5
266	Beneficial effects of combinatorial micronutrition on body fat and atherosclerosis in mice. Cardiovascular Research, 2011, 91, 732-741.	3.8	5
267	Roles of Estrogens in the Healthy and Diseased Oviparous Vertebrate Liver. Metabolites, 2021, 11, 502.	2.9	5
268	Factors promoting the establishment of primary cultures of liver cells fromXenopus larvae. Wilhelm Roux's Archives of Developmental Biology, 1977, 182, 347-360.	1.4	4
269	PPARs in fetal and early postnatal development. Advances in Developmental Biology (Amsterdam,) Tj ETQq $1\ 1\ 0$.	784314 rg 0.4	BT ₄ /Overlock
270	PPAR Disruption: Cellular Mechanisms and Physiological Consequences. Chimia, 2008, 62, 340-344.	0.6	4

#	Article	IF	Citations
271	Invalidation of the Transcriptional Modulator of Lipid Metabolism PPARβʃl´ in T Cells Prevents Age-Related Alteration of Body Composition and Loss of Endurance Capacity. Frontiers in Physiology, 2021, 12, 587753.	2.8	4
272	Peroxisome proliferator-activated receptor-? as a target for wound healing drugs. Expert Opinion on Therapeutic Targets, 2004, 8, 39-48.	3.4	4
273	Peroxisome proliferator-activated receptor \hat{l}^2/\hat{l} : a master regulator of metabolic pathways in skeletal muscle. Hormone Molecular Biology and Clinical Investigation, 2010, 4, 565-573.	0.7	3
274	Roles of the peroxisome proliferator-activated receptor (PPAR) \hat{l}_{\pm} and \hat{l}_{-}/\hat{l}' in skin wound healing. International Congress Series, 2007, 1302, 45-52.	0.2	2
275	Pharmacological PPARβʃî′ activation upregulates VLDLR in hepatocytes. ClÃnica E Investigación En Arteriosclerosis (English Edition), 2019, 31, 111-118.	0.2	2
276	The Potential of the FSP1cre-Pparb/d \hat{a} °/ \hat{a} ° Mouse Model for Studying Juvenile NAFLD. International Journal of Molecular Sciences, 2019, 20, 5115.	4.1	2
277	Peroxisomal Proliferator-Activated Receptor \hat{I}^2/\hat{I}' Deficiency Induces Cognitive Alterations. Frontiers in Pharmacology, 0, 13, .	3.5	2
278	Transposition of a bacterial IS3 element into aXenopusVi-element. Nucleic Acids Research, 1986, 14, 7814-7814.	14.5	1
279	Steroid Hormone and Related Receptors. Principles of Medical Biology, 1997, , 255-296.	0.1	1
280	PPARs: Nuclear Hormone Receptors Involved in the Control of Inflammation. , 0, , 419-435.		1
281	Nuclear Hormone Receptors and Epidermal Differentiation. , 2015, , 91-106.		1
282	PPARα, A Key Regulator of Hepatic Energy Homeostasis in Health and Disease. , 2010, , 305-315.		1
283	Functional Interaction between the Estrogen Receptor and CTF1: Analysis of the Vitellogenin Gene B1 Promoter in Yeast. Molecular Endocrinology, 1998, 12, 1525-1541.	3.7	1
284	PPAR-beta and retinol metabolism related gene-expression in HSC. Journal of Hepatology, 2002, 36, 71.	3.7	0
285	Peroxisome Proliferator Activated Receptors. , 2005, , 267-280.		0
286	PPARs: Lipid Sensors that Regulate Cell Differentiation Processes. , 2006, , 117-131.		0
287	La activación de receptor activado por proliferadores peroxisómicos β/δ mejora la resistencia a insulina inducida por IL-6 en células hepáticas. ClÃnica E Investigación En Arteriosclerosis, 2012, 24, 275-283.	0.8	0
288	Peroxisome proliferator-activated receptor \hat{l}^2/\hat{l}' induces myogenesis by modulating myostatin activity Journal of Biological Chemistry, 2016, 291, 14391.	3.4	0

#	Article	IF	CITATIONS
289	Peroxisome Proliferator Activated Receptor Alpha Coordinates Intermediary Metabolism During Fasting. Medical Science Symposia Series, 2002, , 1-4.	0.0	O
290	Sensors for Metabolic Control. Growth Hormone, 2002, , 283-304.	0.2	0
291	Understanding the Coordinated Effects of PPARs on Lipid Metabolism Using Microarrays. , 2004, , 249-263.		0
292	Tissue Repair and Cancer Control through PPARs and Their Coregulators. , 2008, , 409-440.		0
293	Regulation of epithelial–mesenchymal IL-1 signaling by PPARβ∫δ is essential for skin homeostasis and wound healing. Journal of Experimental Medicine, 2009, 206, i6-i6.	8.5	0
294	Electron Microscope Visualisation of Protein-DNA Complexes., 1991,, 153-161.		0
295	PPARα., 1998,, 235-256.		0
296	PPARβ/δis not required by PGCâ€1α to enhance skeletal muscle oxidative metabolism (1164.3). FASEB Journal, 2014, 28, 1164.3.	0.5	0
297	"Every day I dream …―An interview with the Rwandan Health Minister. Swiss Medical Weekly, 2016, 146, w14316.	1.6	0
298	The Loss of PPARα in Adipocytes Induces Lipogenesis via the PASKâ€6REBP1 Signaling Axis. FASEB Journal, 2022, 36, .	0.5	0