B Schumacher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/525150/publications.pdf

Version: 2024-02-01

85 5,566 33 71 papers citations h-index g-index

91 91 91 91 8403

times ranked

docs citations

all docs

citing authors

#	Article	IF	CITATIONS
1	p53 in the DNA-Damage-Repair Process. Cold Spring Harbor Perspectives in Medicine, 2016, 6, a026070.	6.2	523
2	The p53 network: cellular and systemic DNA damage responses in aging and cancer. Trends in Genetics, 2012, 28, 128-136.	6.7	389
3	The central role of DNA damage in the ageing process. Nature, 2021, 592, 695-703.	27.8	340
4	The C. elegans homolog of the p53 tumor suppressor is required for DNA damage-induced apoptosis. Current Biology, 2001, 11, 1722-1727.	3.9	334
5	DNA repair mechanisms in cancer development and therapy. Frontiers in Genetics, 2015, 6, 157.	2.3	240
6	Age to survive: DNA damage and aging. Trends in Genetics, 2008, 24, 77-85.	6.7	230
7	DNA damage responses and p53 in the aging process. Blood, 2018, 131, 488-495.	1.4	218
8	Translational Repression of C. elegans p53 by GLD-1 Regulates DNA Damage-Induced Apoptosis. Cell, 2005, 120, 357-368.	28.9	195
9	DNA damage in germ cells induces an innate immune response that triggers systemic stress resistance. Nature, 2013, 501, 416-420.	27.8	182
10	Delayed and Accelerated Aging Share Common Longevity Assurance Mechanisms. PLoS Genetics, 2008, 4, e1000161.	3.5	178
11	Impact of genomic damage and ageing on stem cell function. Nature Cell Biology, 2014, 16, 201-207.	10.3	171
12	C. elegans ced-13 can promote apoptosis and is induced in response to DNA damage. Cell Death and Differentiation, 2005, 12, 153-161.	11.2	162
13	Insights from the worm: The C. elegans model for innate immunity. Seminars in Immunology, 2014, 26, 303-309.	5.6	162
14	DNA Damage Response and Immune Defense: Links and Mechanisms. Frontiers in Genetics, 2016, 7, 147.	2.3	161
15	Neural sirtuin 6 (Sirt6) ablation attenuates somatic growth and causes obesity. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21790-21794.	7.1	160
16	Persistent transcription-blocking DNA lesions trigger somatic growth attenuation associated with longevity. Nature Cell Biology, 2009, 11, 604-615.	10.3	127
17	Next Generation Sequencing of miRNAs – Strategies, Resources and Methods. Genes, 2010, 1, 70-84.	2.4	112
18	Involvement of Global Genome Repair, Transcription Coupled Repair, and Chromatin Remodeling in UV DNA Damage Response Changes during Development. PLoS Genetics, 2010, 6, e1000941.	3.5	111

#	Article	IF	Citations
19	DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage. Nature Cell Biology, 2014, 16, 1168-1179.	10.3	97
20	Systemic DNA damage responses in aging and diseases. Seminars in Cancer Biology, 2016, 37-38, 26-35.	9.6	89
21	The p53 network: cellular and systemic DNA damage responses in cancer and aging. Trends in Genetics, 2022, 38, 598-612.	6.7	67
22	BiT age: A transcriptomeâ€based aging clock near the theoretical limit of accuracy. Aging Cell, 2021, 20, e13320.	6.7	62
23	Transcriptional profiling in C. elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family. BMC Genomics, 2008, 9, 334.	2.8	59
24	AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis. EMBO Journal, 2012, 31, 3961-3975.	7.8	53
25	Genome maintenance and transcription integrity in aging and disease. Frontiers in Genetics, 2013, 4, 19.	2.3	53
26	DNA damage responses in ageing. Open Biology, 2019, 9, 190168.	3.6	46
27	Altered lipid metabolism in the aging kidney identified by three layered omic analysis. Aging, 2016, 8, 441-454.	3.1	46
28	Endogenous formaldehyde scavenges cellular glutathione resulting in redox disruption and cytotoxicity. Nature Communications, 2022, 13, 745.	12.8	45
29	Multilayered Reprogramming in Response to Persistent DNA Damage in C.Âelegans. Cell Reports, 2017, 20, 2026-2043.	6.4	44
30	Systemic DNA damage responses: organismal adaptations to genome instability. Trends in Genetics, 2014, 30, 95-102.	6.7	43
31	The tumour suppressor CYLD regulates the p53 DNA damage response. Nature Communications, 2016, 7, 12508.	12.8	40
32	Sealing the gap between nuclear DNA damage and longevity. Molecular and Cellular Endocrinology, 2009, 299, 112-117.	3.2	38
33	Genome Instability in Development and Aging: Insights from Nucleotide Excision Repair in Humans, Mice, and Worms. Biomolecules, 2015, 5, 1855-1869.	4.0	36
34	Principles of the Molecular and Cellular Mechanisms of Aging. Journal of Investigative Dermatology, 2021, 141, 951-960.	0.7	36
35	E4 ligase–specific ubiquitination hubs coordinate DNA double-strand-break repair and apoptosis. Nature Structural and Molecular Biology, 2016, 23, 995-1002.	8.2	35
36	Somatic Niche Cells Regulate the CEP-1/p53-Mediated DNA Damage Response in Primordial Germ Cells. Developmental Cell, 2019, 50, 167-183.e8.	7.0	33

#	Article	IF	CITATIONS
37	H3K4me2 regulates the recovery of protein biosynthesis and homeostasis following DNA damage. Nature Structural and Molecular Biology, 2020, 27, 1165-1177.	8.2	32
38	Identification of ageing-associated naturally occurring peptides in human urine. Oncotarget, 2015, 6, 34106-34117.	1.8	31
39	DNA Damaged Induced Cell Death in Oocytes. Molecules, 2020, 25, 5714.	3.8	30
40	Transcriptionâ€blocking DNA damage in aging: a mechanism for hormesis. BioEssays, 2009, 31, 1347-1356.	2.5	29
41	Graphene, other carbon nanomaterials and the immune system: toward nanoimmunity-by-design. JPhys Materials, 2020, 3, 034009.	4.2	29
42	Loss of <i>Caenorhabditis elegans</i> BRCA1 Promotes Genome Stability During Replication in <i>smc-5</i> Mutants. Genetics, 2014, 196, 985-999.	2.9	28
43	A C. elegans homolog of the Cockayne syndrome complementation group A gene. DNA Repair, 2014, 24, 57-62.	2.8	28
44	A simple answer to complex questions: <i>Caenorhabditis elegans</i> as an experimental model for examining the DNA damage response and disease genes. Journal of Cellular Physiology, 2018, 233, 2781-2790.	4.1	28
45	DNA Damage Response and Metabolic Reprogramming in Health and Disease. Trends in Genetics, 2020, 36, 777-791.	6.7	26
46	UV light-blocking contact lenses protect against short-term UVB-induced limbal stem cell niche damage and inflammation. Scientific Reports, 2018, 8, 12564.	3.3	23
47	A C. elegans model for neurodegeneration in Cockayne syndrome. Nucleic Acids Research, 2020, 48, 10973-10985.	14.5	23
48	Molecular pathology of rare progeroid diseases. Trends in Molecular Medicine, 2021, 27, 907-922.	6.7	23
49	Systematic analysis of DNA crosslink repair pathways during development and aging in Caenorhabditis elegans. Nucleic Acids Research, 2017, 45, 9467-9480.	14.5	22
50	MPK-1/ERK pathway regulates DNA damage response during development through DAF-16/FOXO. Nucleic Acids Research, 2018, 46, 6129-6139.	14.5	22
51	The Cdkn1aSUPER Mouse as a Tool to Study p53-Mediated Tumor Suppression. Cell Reports, 2018, 25, 1027-1039.e6.	6.4	19
52	Proteome analysis in the assessment of ageing. Ageing Research Reviews, 2014, 18, 74-85.	10.9	18
53	<i>Ercc1</i> Deficiency Promotes Tumorigenesis and Increases Cisplatin Sensitivity in a <i>Tp53</i> Context-Specific Manner. Molecular Cancer Research, 2016, 14, 1110-1123.	3.4	18
54	Transcription-blocking DNA damage in aging and longevity. Cell Cycle, 2009, 8, 2131-2137.	2.6	17

#	Article	IF	CITATIONS
55	The innate immune system as mediator of systemic DNA damage responses. Communicative and Integrative Biology, 2013, 6, e26926.	1.4	17
56	Quality control mechanisms in cellular and systemic DNA damage responses. Ageing Research Reviews, 2015, 23, 3-11.	10.9	16
57	Extension of longevity and reduction of inflammation is ovarian-dependent, but germ cell-independent in post-reproductive female mice. GeroScience, 2019, 41, 25-38.	4.6	16
58	Transcriptional profiling reveals progeroid Ercc1 - \hat{l} " mice as a model system for glomerular aging. BMC Genomics, 2013, 14, 559.	2.8	15
59	ALG-2/AGO-Dependent <i>mir-35</i> Family Regulates DNA Damage-Induced Apoptosis Through MPK-1/ERK MAPK Signaling Downstream of the Core Apoptotic Machinery in <i>Caenorhabditis elegans</i> Genetics, 2019, 213, 173-194.	2.9	15
60	DNA damage responses and stress resistance: Concepts from bacterial SOS to metazoan immunity. Mechanisms of Ageing and Development, 2017, 165, 27-32.	4.6	13
61	Genome instability: Linking ageing and brain degeneration. Mechanisms of Ageing and Development, 2017, 161, 4-18.	4.6	11
62	A C. elegans homolog for the UV-hypersensitivity syndrome disease gene UVSSA. DNA Repair, 2016, 41, 8-15.	2.8	10
63	Age is in the nucleus. Nature Metabolism, 2019, 1, 931-932.	11.9	9
64	Targeting transcription-coupled nucleotide excision repair overcomes resistance in chronic lymphocytic leukemia. Leukemia, 2017, 31, 1177-1186.	7.2	8
65	$\langle \text{scp}\rangle \text{BRCA} / \text{scp}\rangle 1$ and $\langle \text{scp}\rangle \text{BARD} / \text{scp}\rangle 1$ mediate apoptotic resistance but not longevity upon mitochondrial stress in $\langle \text{i}\rangle \text{Caenorhabditis elegans} / \text{i}\rangle$. EMBO Reports, 2018, 19, .	4.5	8
66	Somatic PMK-1/p38 signaling links environmental stress to germ cell apoptosis and heritable euploidy. Nature Communications, 2022, 13, 701.	12.8	8
67	Restoration of Proteostasis in the Endoplasmic Reticulum Reverses an Inflammation-Like Response to Cytoplasmic DNA in <i>Caenorhabditis elegans < li>Io</i>	2.9	7
68	The Aging Skin: From Basic Mechanisms to Clinical Applications. Journal of Investigative Dermatology, 2021, 141, 949-950.	0.7	7
69	Recent advances in understanding the mechanisms determining longevity. F1000Research, 2019, 8, 1403.	1.6	7
70	Cell Cycle: Check for Asynchrony. Current Biology, 2003, 13, R560-R562.	3.9	5
71	Longevity through DNA damage tolerance. Cell Cycle, 2015, 14, 467-468.	2.6	5
72	Perinatal Obesity Induces Hepatic Growth Restriction with Increased DNA Damage Response, Senescence, and Dysregulated Igf-1-Akt-Foxo1 Signaling in Male Offspring of Obese Mice. International Journal of Molecular Sciences, 2022, 23, 5609.	4.1	5

#	Article	IF	Citations
73	Translational regulation of p53 as a potential tumor therapy target. Future Oncology, 2006, 2, 145-153.	2.4	3
74	Hormesis running hot and cold. Cell Cycle, 2016, 15, 3335-3336.	2.6	3
75	Omics Approaches for Identifying Physiological Adaptations to Genome Instability in Aging. International Journal of Molecular Sciences, 2017, 18, 2329.	4.1	3
76	Evaluating DNA damage response through immunofluorescence staining of primordial germ cells in Caenorhabditis elegans L1 larva. STAR Protocols, 2021, 2, 100441.	1.2	2
77	Translational Repression of C. elegans p53 by GLD-1 Regulates DNA Damage-Induced Apoptosis. Cell, 2005, 122, 145.	28.9	1
78	Genome Stability in Caenorhabditis elegans. , 2016, , 163-186.		1
79	Tracking senescent cells: A new biomarker assay opens new avenues in senescence research. Mechanisms of Ageing and Development, 2017, 162, 106-107.	4.6	1
80	Editorial: DNA damage & Editor	4.6	1
81	DNA-Reparatur und Alterung. Medizinische Genetik, 2012, 24, 289-296.	0.2	0
82	In grateful recognition of our Editorial Board. BioEssays, 2015, 37, 1254-1255.	2.5	0
83	Wormpath: searching for molecular interaction networks in Caenorhabditis elegans. Source Code for Biology and Medicine, 2015, 10, 5.	1.7	0
84	543 UVA irradiation of senescence fibroblasts epigenetically unlock anti-apoptotic GDF15 expression via interleukin-6 mediated promoter demethylation in melanoma cells. Journal of Investigative Dermatology, 2016, 136, S253.	0.7	0
85	Nucleotide excision repair as a targetable vulnerability in leukemia. Oncotarget, 2017, 8, 114420-114421.	1.8	0