K D M Rao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5251321/publications.pdf Version: 2024-02-01

KDMRAO

#	Article	IF	CITATIONS
1	Visibly Transparent Heaters. ACS Applied Materials & amp; Interfaces, 2016, 8, 12559-12575.	4.0	194
2	Spray Coating of Crack Templates for the Fabrication of Transparent Conductors and Heaters on Flat and Curved Surfaces. ACS Applied Materials & Interfaces, 2014, 6, 13688-13696.	4.0	130
3	A highly crystalline single Au wire network as a high temperature transparent heater. Nanoscale, 2014, 6, 5645.	2.8	102
4	Fabrication of Large Area, Highâ€Performance, Transparent Conducting Electrodes Using a Spontaneously Formed Crackle Network as Template. Advanced Materials Interfaces, 2014, 1, 1400090.	1.9	97
5	Large area solution processed transparent conducting electrode based on highly interconnected Cu wire network. Journal of Materials Chemistry C, 2014, 2, 2089.	2.7	81
6	Towards low cost materials and methods for transparent electrodes. Current Opinion in Chemical Engineering, 2015, 8, 60-68.	3.8	67
7	Metal wire network based transparent conducting electrodes fabricated using interconnected crackled layer as template. Materials Research Express, 2014, 1, 026301.	0.8	58
8	A cracked polymer templated metal network as a transparent conducting electrode for ITO-free organic solar cells. Physical Chemistry Chemical Physics, 2014, 16, 15107-15110.	1.3	58
9	Transparent, Flexible Silicon Nanostructured Wire Networks with Seamless Junctions for High-Performance Photodetector Applications. ACS Nano, 2018, 12, 4727-4735.	7.3	51
10	Selfâ€Powered and Broadband Photodetectors with GaN: Layered rGO Hybrid Heterojunction. Advanced Materials Interfaces, 2019, 6, 1900923.	1.9	40
11	Transparent Pd Wire Network-Based Areal Hydrogen Sensor with Inherent Joule Heater. ACS Applied Materials & Interfaces, 2016, 8, 23419-23424.	4.0	28
12	Transparent Metal Network with Low Haze and High Figure of Merit applied to Front and Back Electrodes in Semitransparent ITOâ€free Polymer Solar Cells. Energy Technology, 2015, 3, 638-645.	1.8	24
13	Highly Conformal Ni Micromesh as a Current Collecting Front Electrode for Reduced Cost Si Solar Cell. ACS Applied Materials & Interfaces, 2017, 9, 8634-8640.	4.0	24
14	Cosmetically Adaptable Transparent Strain Sensor for Sensitively Delineating Patterns in Small Movements of Vital Human Organs. ACS Applied Materials & Interfaces, 2018, 10, 44126-44133.	4.0	23
15	Transparent and flexible capacitor fabricated using a metal wire network as a transparent conducting electrode. RSC Advances, 2014, 4, 31108-31112.	1.7	22
16	Metallic Conduction in NiS2 Nanocrystalline Structures. Journal of Physical Chemistry C, 2011, 115, 10462-10467.	1.5	20
17	Large-area transparent flexible guanidinium incorporated MAPbI3 microstructures for high-performance photodetectors with enhanced stability. Nanoscale Horizons, 2020, 5, 696-704.	4.1	15
18	Defining Switching Efficiency of Multilevel Resistive Memory with PdO as an Example. Advanced Electronic Materials, 2016, 2, 1500286.	2.6	14

K D M RAO

#	Article	IF	CITATIONS
19	Transparent, flexible MAPbI ₃ perovskite microwire arrays passivated with ultra-hydrophobic supramolecular self-assembly for stable and high-performance photodetectors. Nanoscale, 2020, 12, 11986-11996.	2.8	14
20	Parallel cracks from a desiccating colloidal layer under gravity flow and their use in fabricating metal micro-patterns. Journal of Physics and Chemistry of Solids, 2018, 118, 232-237.	1.9	12
21	Hotâ€Spin Casting Synthesis of Freestanding Cs ₂ AgBiBr ₆ Double Perovskite Facetâ€Oriented Microcrystals for Efficient Photodetectors. Advanced Materials Interfaces, 2021, 8, 2100570.	1.9	11
22	Solution-Based Fast Fabrication of a High-Performance Unlimited Area Au Nanostructure/Si Heterojunction Photodetector. ACS Applied Electronic Materials, 2019, 1, 577-584.	2.0	10
23	Narrowing Desiccating Crack Patterns by an Azeotropic Solvent for the Fabrication of Nanomesh Electrodes. Langmuir, 2019, 35, 16130-16135.	1.6	7
24	Angled-stencil lithography based metal mesh/Ti ₃ C ₂ T _x MXene hybrid transparent electrodes for low-power and high-performance wearable thermotherapy. Journal of Materials Chemistry C, 0, , .	2.7	7
25	Solution-processed soldering of carbon nanotubes for flexible electronics. Nanotechnology, 2013, 24, 075301.	1.3	4
26	Layer-by-Layer Assembly-Based Heterointerfaces for Modulating the Electronic Properties of Ti ₃ C ₂ T _{<i>x</i>} MXene. ACS Applied Materials & Interfaces, 2021, 13, 59104-59114.	4.0	4
27	Screenâ€Displayâ€Induced Photoresponse Mapping for Largeâ€Area Photovoltaics. Energy Technology, 2013, 1, 770-775.	1.8	3