Peter Proks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/525070/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Activating Mutations in the Gene Encoding the ATP-Sensitive Potassium-Channel Subunit Kir6.2 and Permanent Neonatal Diabetes. New England Journal of Medicine, 2004, 350, 1838-1849.	13.9	1,077
2	Sulfonylurea Stimulation of Insulin Secretion. Diabetes, 2002, 51, S368-S376.	0.3	393
3	Molecular basis of Kir6.2 mutations associated with neonatal diabetes or neonatal diabetes plus neurological features. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17539-17544.	3.3	223
4	Reversible changes in pancreatic islet structure and function produced by elevated blood glucose. Nature Communications, 2014, 5, 4639.	5.8	220
5	A heterozygous activating mutation in the sulphonylurea receptor SUR1 (ABCC8) causes neonatal diabetes. Human Molecular Genetics, 2006, 15, 1793-1800.	1.4	196
6	Relapsing diabetes can result from moderately activating mutations in KCNJ11. Human Molecular Genetics, 2005, 14, 925-934.	1.4	184
7	Molecular Analysis of ATP-sensitive K Channel Gating and Implications for Channel Inhibition by ATP. Journal of General Physiology, 1998, 112, 333-349.	0.9	168
8	Promiscuous coupling between the sulphonylurea receptor and inwardly rectifying potassium channels. Nature, 1996, 379, 545-548.	13.7	156
9	A gating mutation at the internal mouth of the Kir6.2 pore is associated with DEND syndrome. EMBO Reports, 2005, 6, 470-475.	2.0	99
10	Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic β cells recapitulates neonatal diabetes. Journal of Clinical Investigation, 2009, 119, 80-90.	3.9	95
11	Mutations within the P-Loop of Kir6.2 Modulate the Intraburst Kinetics of the Atp-Sensitive Potassium Channel. Journal of General Physiology, 2001, 118, 341-353.	0.9	88
12	Functional effects of KCNJ11 mutations causing neonatal diabetes: enhanced activation by MgATP. Human Molecular Genetics, 2005, 14, 2717-2726.	1.4	74
13	Modeling KATP channel gating and its regulation. Progress in Biophysics and Molecular Biology, 2009, 99, 7-19.	1.4	55
14	How ATP Inhibits the Open KATP Channel. Journal of General Physiology, 2008, 132, 131-144.	0.9	53
15	Mechanism of action of a sulphonylurea receptor SUR1 mutation (F132L) that causes DEND syndrome. Human Molecular Genetics, 2007, 16, 2011-2019.	1.4	51
16	Activation of the KATP channel by Mg-nucleotide interaction with SUR1. Journal of General Physiology, 2010, 136, 389-405.	0.9	51
17	Molecular Mechanism of Sulphonylurea Block of KATP Channels Carrying Mutations That Impair ATP Inhibition and Cause Neonatal Diabetes. Diabetes, 2013, 62, 3909-3919.	0.3	44
18	Functional Effects of Mutations at F35 in the NH2-terminus of Kir6.2 (KCNJ11), Causing Neonatal Diabetes, and Response to Sulfonylurea Therapy. Diabetes, 2006, 55, 1731-1737.	0.3	41

Peter Proks

#	Article	lF	CITATIONS
19	Molecular action of sulphonylureas on KATP channels: a real partnership between drugs and nucleotides. Biochemical Society Transactions, 2015, 43, 901-907.	1.6	39
20	Expression of functionally active ATP-sensitive K-channels in insect cells using baculovirus. FEBS Letters, 1998, 429, 390-394.	1.3	38
21	Neonatal diabetes caused by a homozygous KCNJ11 mutation demonstrates that tiny changes in ATP sensitivity markedly affect diabetes risk. Diabetologia, 2016, 59, 1430-1436.	2.9	25
22	Sulfonylureas suppress the stimulatory action of Mg-nucleotides on Kir6.2/SUR1 but not Kir6.2/SUR2A KATP channels: A mechanistic study. Journal of General Physiology, 2014, 144, 469-486.	0.9	20
23	Norfluoxetine inhibits TREK-2 K2P channels by multiple mechanisms including state-independent effects on the selectivity filter gate. Journal of General Physiology, 2021, 153, .	0.9	17
24	Neonatal Diabetes Caused by Activating Mutations in the Sulphonylurea Receptor. Diabetes and Metabolism Journal, 2013, 37, 157.	1.8	15
25	Running out of time: the decline of channel activity and nucleotide activation in adenosine triphosphate-sensitive K-channels. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150426.	1.8	14
26	Binding of sulphonylureas to plasma proteins – A KATP channel perspective. PLoS ONE, 2018, 13, e0197634.	1.1	14
27	The <i>KCNJ11-E23K</i> Gene Variant Hastens Diabetes Progression by Impairing Glucose-Induced Insulin Secretion. Diabetes, 2021, 70, 1145-1156.	0.3	11
28	Role of the Câ€ŧerminus of SUR in the differential regulation of β ell and cardiac K ATP channels by MgADP and metabolism. Journal of Physiology, 2018, 596, 6205-6217.	1.3	6
29	Development of postpartum Graves' disease and type 1 diabetes after delivery in a patient with gestational diabetes. Journal of Diabetes Investigation, 2011, 2, 328-330.	1.1	5
30	The value of inÂvitro studies in a case of neonatal diabetes with a novel Kir6.2â€W68G mutation. Clinical Case Reports (discontinued), 2015, 3, 884-887.	0.2	4
31	Phenotype of a transient neonatal diabetes point mutation (SUR1-R1183W) in mice. Wellcome Open Research, 2020, 5, 15.	0.9	1
32	Effects of ionic strength on gating and permeation of TREK-2 K2P channels. PLoS ONE, 2021, 16, e0258275.	1.1	0