
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5250245/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Darwinian perspective on tumor immune evasion. Biochimica Et Biophysica Acta: Reviews on Cancer, 2022, 1877, 188671.	3.3	6
2	Report of the First International Symposium on NUT Carcinoma. Clinical Cancer Research, 2022, 28, 2493-2505.	3.2	23
3	Insights into Immune Escape During Tumor Evolution and Response to Immunotherapy Using a Rat Model of Breast Cancer. Cancer Immunology Research, 2022, 10, 680-697.	1.6	12
4	Early-Life Body Adiposity and the Breast Tumor Transcriptome. Journal of the National Cancer Institute, 2021, 113, 778-784.	3.0	9
5	The impact of tumor epithelial and microenvironmental heterogeneity on treatment responses in HER2-positive breast cancer. JCI Insight, 2021, 6, .	2.3	20
6	Impact of HER2 Heterogeneity on Treatment Response of Early-Stage HER2-Positive Breast Cancer: Phase II Neoadjuvant Clinical Trial of T-DM1 Combined with Pertuzumab. Cancer Discovery, 2021, 11, 2474-2487.	7.7	92
7	The MCF10 Model of Breast Tumor Progression. Cancer Research, 2021, 81, 4183-4185.	0.4	14
8	Genomic Alterations during the <i>In Situ</i> to Invasive Ductal Breast Carcinoma Transition Shaped by the Immune System. Molecular Cancer Research, 2021, 19, 623-635.	1.5	24
9	A roadmap for the next decade in cancer research. Nature Cancer, 2020, 1, 12-17.	5.7	17
10	Acquired resistance to combined BET and CDK4/6 inhibition in triple-negative breast cancer. Nature Communications, 2020, 11, 2350.	5.8	45
11	Increased lysosomal biomass is responsible for the resistance of triple-negative breast cancers to CDK4/6 inhibition. Science Advances, 2020, 6, eabb2210.	4.7	46
12	Immune Escape during Breast Tumor Progression. Cancer Immunology Research, 2020, 8, 422-427.	1.6	73
13	Intratumor Heterogeneity: The Rosetta Stone of Therapy Resistance. Cancer Cell, 2020, 37, 471-484.	7.7	485
14	Premenopausal Plasma Osteoprotegerin and Breast Cancer Risk: A Case–Control Analysis Nested within the Nurses' Health Study II. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1264-1270.	1.1	7
15	Synthetic Lethal and Resistance Interactions with BET Bromodomain Inhibitors in Triple-Negative Breast Cancer. Molecular Cell, 2020, 78, 1096-1113.e8.	4.5	114
16	Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nature Cell Biology, 2019, 21, 879-888.	4.6	114
17	Tumor Neoantigens: When Too Much of a Good Thing Is Bad. Cancer Cell, 2019, 36, 466-467.	7.7	13
18	Perturbed myoepithelial cell differentiation in BRCA mutation carriers and in ductal carcinoma in situ. Nature Communications, 2019, 10, 4182.	5.8	37

#	Article	IF	CITATIONS
19	Insights into Molecular Classifications of Triple-Negative Breast Cancer: Improving Patient Selection for Treatment. Cancer Discovery, 2019, 9, 176-198.	7.7	778
20	Metastasis as a systemic disease: molecular insights and clinical implications. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1872, 89-102.	3.3	44
21	<i>EN1</i> Is a Transcriptional Dependency in Triple-Negative Breast Cancer Associated with Brain Metastasis. Cancer Research, 2019, 79, 4173-4183.	0.4	47
22	Deletion of Cdkn1b in ACI rats leads to increased proliferation and pregnancy-associated changes in the mammary gland due to perturbed systemic endocrine environment. PLoS Genetics, 2019, 15, e1008002.	1.5	11
23	Intratumoral Heterogeneity: More Than Just Mutations. Trends in Cell Biology, 2019, 29, 569-579.	3.6	157
24	HER2 heterogeneity as a predictor of response to neoadjuvant T-DM1 plus pertuzumab: Results from a prospective clinical trial Journal of Clinical Oncology, 2019, 37, 502-502.	0.8	65
25	KDM5 Histone Demethylase Activity Links Cellular Transcriptomic Heterogeneity to Therapeutic Resistance. Cancer Cell, 2018, 34, 939-953.e9.	7.7	170
26	Epidemiology, Biology, Treatment, and Prevention of Ductal Carcinoma In Situ (DCIS). JNCI Cancer Spectrum, 2018, 2, pky063.	1.4	17
27	TRPS1 Is a Lineage-Specific Transcriptional Dependency in Breast Cancer. Cell Reports, 2018, 25, 1255-1267.e5.	2.9	46
28	A confetti trail of tumour evolution. Nature Cell Biology, 2018, 20, 639-641.	4.6	6
29	Dissecting the mammary gland one cell at a time. Nature Communications, 2018, 9, 2473.	5.8	33
30	Phase II study of ruxolitinib, a selective JAK1/2 inhibitor, in patients with metastatic triple-negative breast cancer. Npj Breast Cancer, 2018, 4, 10.	2.3	95
31	Intratumor heterogeneity defines treatmentâ€resistant <scp>HER</scp> 2+ breast tumors. Molecular Oncology, 2018, 12, 1838-1855.	2.1	74
32	G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nature Cell Biology, 2017, 19, 177-188.	4.6	107
33	Cell-Cycle-Targeting MicroRNAs as Therapeutic Tools against Refractory Cancers. Cancer Cell, 2017, 31, 576-590.e8.	7.7	84
34	The metabolic function of cyclin D3–CDK6 kinase in cancer cell survival. Nature, 2017, 546, 426-430.	13.7	276
35	Precancer Atlas to Drive Precision Prevention Trials. Cancer Research, 2017, 77, 1510-1541.	0.4	116
36	Mathematical Modeling Links Pregnancy-Associated Changes and Breast Cancer Risk. Cancer Research, 2017, 77, 2800-2809.	0.4	7

#	Article	IF	CITATIONS
37	Myoepithelial cellâ€specific expression of stefin A as a suppressor of early breast cancer invasion. Journal of Pathology, 2017, 243, 496-509.	2.1	44
38	Classifying the evolutionary and ecological features of neoplasms. Nature Reviews Cancer, 2017, 17, 605-619.	12.8	303
39	Immune Escape in Breast Cancer During <i>In Situ</i> to Invasive Carcinoma Transition. Cancer Discovery, 2017, 7, 1098-1115.	7.7	185
40	Scientific Summary from the Morgan Welch MD Anderson Cancer Center Inflammatory Breast Cancer (IBC) Program 10th Anniversary Conference. Journal of Cancer, 2017, 8, 3607-3614.	1.2	15
41	BRCA1/FANCD2/BRG1-Driven DNA Repair Stabilizes the Differentiation State of Human Mammary Epithelial Cells. Molecular Cell, 2016, 63, 277-292.	4.5	61
42	Expression of estrogen receptor, progesterone receptor, and Ki67 in normal breast tissue in relation to subsequent risk of breast cancer. Npj Breast Cancer, 2016, 2, .	2.3	39
43	BET Bromodomain Proteins as Cancer Therapeutic Targets. Cold Spring Harbor Symposia on Quantitative Biology, 2016, 81, 123-129.	2.0	56
44	Spatial Proximity to Fibroblasts Impacts Molecular Features and Therapeutic Sensitivity of Breast Cancer Cells Influencing Clinical Outcomes. Cancer Research, 2016, 76, 6495-6506.	0.4	105
45	Direct Transcriptional Consequences of Somatic Mutation in Breast Cancer. Cell Reports, 2016, 16, 2032-2046.	2.9	36
46	Intratumor Heterogeneity in Breast Cancer. Advances in Experimental Medicine and Biology, 2016, 882, 169-189.	0.8	111
47	The Proliferative Activity of Mammary Epithelial Cells in Normal Tissue Predicts Breast Cancer Risk in Premenopausal Women. Cancer Research, 2016, 76, 1926-1934.	0.4	43
48	Response and resistance to BET bromodomain inhibitors in triple-negative breast cancer. Nature, 2016, 529, 413-417.	13.7	490
49	Age- and Pregnancy-Associated DNA Methylation Changes in Mammary Epithelial Cells. Stem Cell Reports, 2015, 4, 297-311.	2.3	45
50	CLK2 Is an Oncogenic Kinase and Splicing Regulator in Breast Cancer. Cancer Research, 2015, 75, 1516-1526.	0.4	79
51	Clonal Evolution in Cancer: A Tale of Twisted Twines. Cell Stem Cell, 2015, 16, 11-12.	5.2	12
52	Toward understanding and exploiting tumor heterogeneity. Nature Medicine, 2015, 21, 846-853.	15.2	604
53	Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer. Cell Reports, 2015, 11, 1549-1563.	2.9	57
54	Tumorigenesis: it takes a village. Nature Reviews Cancer, 2015, 15, 473-483.	12.8	469

#	Article	IF	CITATIONS
55	Dermcidin exerts its oncogenic effects in breast cancer via modulation of ERBB signaling. BMC Cancer, 2015, 15, 70.	1.1	20
56	Principles Governing A-to-I RNA Editing in the Breast Cancer Transcriptome. Cell Reports, 2015, 13, 277-289.	2.9	179
57	In situ single-cell analysis identifies heterogeneity for PIK3CA mutation and HER2 amplification in HER2-positive breast cancer. Nature Genetics, 2015, 47, 1212-1219.	9.4	139
58	Combining miR-10b–Targeted Nanotherapy with Low-Dose Doxorubicin Elicits Durable Regressions of Metastatic Breast Cancer. Cancer Research, 2015, 75, 4407-4415.	0.4	60
59	BRCA1 haploinsufficiency for replication stress suppression in primary cells. Nature Communications, 2014, 5, 5496.	5.8	129
60	Histone Demethylase Jumonji AT-rich Interactive Domain 1B (JARID1B) Controls Mammary Gland Development by Regulating Key Developmental and Lineage Specification Genes. Journal of Biological Chemistry, 2014, 289, 17620-17633.	1.6	48
61	Inference of Tumor Evolution during Chemotherapy by Computational Modeling and In Situ Analysis of Genetic and Phenotypic Cellular Diversity. Cell Reports, 2014, 6, 514-527.	2.9	239
62	Sorting Out the FACS: A Devil in the Details. Cell Reports, 2014, 6, 779-781.	2.9	76
63	Clonal cooperation. Nature, 2014, 508, 52-53.	13.7	40
64	Tumor Heterogeneity Confounds and Illuminates: A case for Darwinian tumor evolution. Nature Medicine, 2014, 20, 344-346.	15.2	57
65	Oncogene-like induction of cellular invasion from centrosome amplification. Nature, 2014, 510, 167-171.	13.7	360
66	Targeting Akt3 Signaling in Triple-Negative Breast Cancer. Cancer Research, 2014, 74, 964-973.	0.4	124
67	Genetic and Phenotypic Diversity in Breast Tumor Metastases. Cancer Research, 2014, 74, 1338-1348.	0.4	161
68	MSC-Regulated MicroRNAs Converge on the Transcription Factor FOXP2 and Promote Breast Cancer Metastasis. Cell Stem Cell, 2014, 15, 762-774.	5.2	155
69	Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. Nature, 2014, 514, 54-58.	13.7	518
70	JARID1B Is a Luminal Lineage-Driving Oncogene in Breast Cancer. Cancer Cell, 2014, 25, 762-777.	7.7	170
71	Molecular Profiling of Human Mammary Gland Links Breast Cancer Risk to a p27+ Cell Population with Progenitor Characteristics. Cell Stem Cell, 2013, 13, 117-130.	5.2	72
72	Cellular Heterogeneity and Molecular Evolution in Cancer. Annual Review of Pathology: Mechanisms of Disease, 2013, 8, 277-302.	9.6	420

#	Article	IF	CITATIONS
73	Interview: Advancing translational research in breast cancer. Breast Cancer Management, 2013, 2, 199-202.	0.2	0
74	On Chromatin Remodeling in Mammary Gland Differentiation and Breast Tumorigenesis. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013417-a013417.	2.3	1
75	Progress in breast cancer research. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2715-2717.	3.3	18
76	On Using Functional Genetics to Understand Breast Cancer Biology. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013516-a013516.	2.3	1
77	SnapShot: Breast Cancer. Cancer Cell, 2012, 22, 562-562.e1.	7.7	64
78	Intra-tumour heterogeneity: a looking glass for cancer?. Nature Reviews Cancer, 2012, 12, 323-334.	12.8	1,668
79	The Expression of Psoriasin (S100A7) and CD24 Is Linked and Related to the Differentiation of Mammary Epithelial Cells. PLoS ONE, 2012, 7, e53119.	1.1	20
80	Sequence analysis of mutations and translocations across breast cancer subtypes. Nature, 2012, 486, 405-409.	13.7	1,107
81	The microenvironment in breast cancer progression: biology and implications for treatment. Breast Cancer Research, 2011, 13, 227.	2.2	340
82	Functional Synergies yet Distinct Modulators Affected by Genetic Alterations in Common Human Cancers. Cancer Research, 2011, 71, 3471-3481.	0.4	10
83	Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the United States of America, 2011, 108, 7950-7955.	3.3	1,024
84	Epigenetic Regulation of Cell Type–Specific Expression Patterns in the Human Mammary Epithelium. PLoS Genetics, 2011, 7, e1001369.	1.5	96
85	The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24– stem cell–like breast cancer cells in human tumors. Journal of Clinical Investigation, 2011, 121, 2723-2735.	3.9	777
86	Heterogeneity in breast cancer. Journal of Clinical Investigation, 2011, 121, 3786-3788.	3.9	763
87	Tumor heterogeneity: Causes and consequences. Biochimica Et Biophysica Acta: Reviews on Cancer, 2010, 1805, 105-117.	3.3	1,036
88	Heterogeneity for Stem Cell–Related Markers According to Tumor Subtype and Histologic Stage in Breast Cancer. Clinical Cancer Research, 2010, 16, 876-887.	3.2	364
89	Stem Cells in the Human Breast. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003160-a003160.	2.3	98
90	The Role of the Microenvironment in Mammary Gland Development and Cancer. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003244-a003244.	2.3	234

#	Article	IF	CITATIONS
91	Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype. Journal of Clinical Investigation, 2010, 120, 636-644.	3.9	299
92	Molecular Markers for the Diagnosis and Management of Ductal Carcinoma In Situ. Journal of the National Cancer Institute Monographs, 2010, 2010, 210-213.	0.9	56
93	Role of COX-2 in epithelial–stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 3372-3377.	3.3	176
94	Clonal Mutations in the Cancer-Associated Fibroblasts: The Case against Genetic Coevolution. Cancer Research, 2009, 69, 6765-6769.	0.4	70
95	Co-evolution of tumor cells and their microenvironment. Trends in Genetics, 2009, 25, 30-38.	2.9	544
96	Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nature Reviews Cancer, 2009, 9, 265-273.	12.8	2,951
97	An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Research, 2009, 11, R66.	2.2	194
98	No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nature Genetics, 2008, 40, 650-655.	9.4	269
99	Regulation of In Situ to Invasive Breast Carcinoma Transition. Cancer Cell, 2008, 13, 394-406.	7.7	437
100	Microenvironmental regulation of cancer development. Current Opinion in Genetics and Development, 2008, 18, 27-34.	1.5	310
101	The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells. Cell, 2008, 133, 704-715.	13.5	7,695
102	Cell type-specific DNA methylation patterns in the human breast. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14076-14081.	3.3	210
103	Genome-Wide Functional Synergy between Amplified and Mutated Genes in Human Breast Cancer. Cancer Research, 2008, 68, 9532-9540.	0.4	94
104	Is Breast Tumor Progression Really Linear?. Clinical Cancer Research, 2008, 14, 339-341.	3.2	39
105	Breast-Cancer Stromal Cells withTP53Mutations. New England Journal of Medicine, 2008, 358, 1634-1636.	13.9	43
106	Integrative Genomic Approaches Identify IKBKE as a Breast Cancer Oncogene. Cell, 2007, 129, 1065-1079.	13.5	538
107	Breast cancer: origins and evolution. Journal of Clinical Investigation, 2007, 117, 3155-3163.	3.9	488
108	Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 2007, 449, 557-563.	13.7	2,874

#	Article	IF	CITATIONS
109	Molecular Definition of Breast Tumor Heterogeneity. Cancer Cell, 2007, 11, 259-273.	7.7	1,273
110	The Genomic Landscapes of Human Breast and Colorectal Cancers. Science, 2007, 318, 1108-1113.	6.0	3,049
111	Breast Cancer Stem Cells: A Case of Mistaken Identity?. Stem Cell Reviews and Reports, 2007, 3, 107-109.	5.6	28
112	Breast Cancer Stem Cells: Reply. Stem Cell Reviews and Reports, 2007, 3, 113-113.	5.6	0
113	Roots and stems: stem cells in cancer. Nature Medicine, 2006, 12, 296-300.	15.2	338
114	Serial analysis of gene expression. Nature Protocols, 2006, 1, 1743-1760.	5.5	35
115	Pregnancy and breast cancer: The other side of the coin. Cancer Cell, 2006, 9, 151-153.	7.7	66
116	The p27Kip1 tumor suppressor gene: Still a suspect or proven guilty?. Cancer Cell, 2006, 10, 352-354.	7.7	25
117	SAGE and related approaches for cancer target identification. Drug Discovery Today, 2006, 11, 110-118.	3.2	30
118	Combined cDNA Array Comparative Genomic Hybridization and Serial Analysis of Gene Expression Analysis of Breast Tumor Progression. Cancer Research, 2006, 66, 4065-4078.	0.4	159
119	Distinct epigenetic changes in the stromal cells of breast cancers. Nature Genetics, 2005, 37, 899-905.	9.4	476
120	Do Myoepithelial Cells Hold the Key for Breast Tumor Progression?. Journal of Mammary Gland Biology and Neoplasia, 2005, 10, 231-247.	1.0	164
121	A Putative Role for Psoriasin in Breast Tumor Progression. Cancer Research, 2005, 65, 11326-11334.	0.4	79
122	HIN-1, an Inhibitor of Cell Growth, Invasion, and AKT Activation. Cancer Research, 2005, 65, 9659-9669.	0.4	61
123	Very High Frequency of Hypermethylated Genes in Breast Cancer Metastasis to the Bone, Brain, and Lung. Clinical Cancer Research, 2004, 10, 3104-3109.	3.2	129
124	Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell, 2004, 6, 17-32.	7.7	1,161
125	Gene expression profiling in breast cancer: from molecular portraits to personalized medicine. Clinical and Translational Oncology, 2004, 6, 192-202.	1.2	1
126	Ductal Carcinoma in Situ of the Breast. New England Journal of Medicine, 2004, 350, 1430-1441.	13.9	541

#	Article	IF	CITATIONS
127	Frequent HIN-1 promoter methylation and lack of expression in multiple human tumor types. Molecular Cancer Research, 2004, 2, 489-94.	1.5	25
128	Frequent HIN-1 Promoter Methylation and Lack of Expression in Multiple Human Tumor Types. Molecular Cancer Research, 2004, 2, 489-494.	1.5	46
129	Cancer target discovery using SAGE. Expert Opinion on Therapeutic Targets, 2003, 7, 759-769.	1.5	8
130	A neural survival factor is a candidate oncogene in breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10931-10936.	3.3	118
131	Serial Analysis of Gene Expression (SAGE). Current Protocols in Human Genetics, 2003, 36, 11.7.1.	3.5	Ο
132	Serial Analysis of Gene Expression (SAGE). Current Protocols in Molecular Biology, 2003, 61, 25B.6.1.	2.9	0
133	Molecular markers in ductal carcinoma in situ of the breast. Molecular Cancer Research, 2003, 1, 362-75.	1.5	205
134	Lack of HIN-1 methylation in BRCA1-linked and "BRCA1-like" breast tumors. Cancer Research, 2003, 63, 2024-7.	0.4	23
135	Breast cancer gene discovery. Expert Reviews in Molecular Medicine, 2002, 4, 1-18.	1.6	7
136	Is p53 a Breast Cancer Gene?. Cancer Biology and Therapy, 2002, 1, 37-38.	1.5	6
137	Molecular alterations in ductal carcinoma in situ of the breast. Current Opinion in Oncology, 2002, 14, 92-96.	1.1	15
138	Expression of high in normal-1 (HIN-1) and uteroglobin related protein-1 (UGRP-1) in adult and developing tissues. Mechanisms of Development, 2002, 114, 201-204.	1.7	34
139	Novel estrogen and tamoxifen induced genes identified by SAGE (Serial Analysis of Gene Expression). Oncogene, 2002, 21, 836-843.	2.6	103
140	On the birth of breast cancer. Biochimica Et Biophysica Acta: Reviews on Cancer, 2001, 1552, 1-13.	3.3	27
141	Analysis of human transcriptomes. Nature Genetics, 1999, 23, 387-388.	9.4	719
142	A model for p53-induced apoptosis. Nature, 1997, 389, 300-305.	13.7	2,392
143	A Syndrome of Multiorgan Hyperplasia with Features of Gigantism, Tumorigenesis, and Female Sterility in p27Kip1-Deficient Mice. Cell, 1996, 85, 733-744.	13.5	1,400
144	Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell, 1994, 78, 59-66.	13.5	2,065