Peicong Ge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5250217/publications.pdf

Version: 2024-02-01

840776 888059 36 367 11 17 citations h-index g-index papers 42 42 42 385 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Association of <i>RNF213</i> Variants With Periventricular Anastomosis in Moyamoya Disease. Stroke, 2022, 53, 2906-2916.	2.0	5
2	Letter to the Editor Regarding "Clinical Prediction of Surgical Revascularization Outcome in Moyamoya Disease Via Transcranial Color Sonographyâ€, Journal of Stroke and Cerebrovascular Diseases, 2021, 30, 105545.	1.6	0
3	Hyperhomocysteinemia is a risk factor for postoperative ischemia in adult patients with moyamoya disease. Neurosurgical Review, 2021, 44, 2913-2921.	2.4	8
4	Association Between Ultrasound Parameters and History of Ischemic or Hemorrhagic Stroke in Patients With Moyamoya Disease. Frontiers in Neurology, 2021, 12, 570843.	2.4	2
5	Homocysteine Level and Risk of Hemorrhage in Brain Arteriovenous Malformations. Disease Markers, 2021, 2021, 1-9.	1.3	2
6	Clinical Significance of Ultrasound-Based Hemodynamic Assessment of Extracranial Internal Carotid Artery and Posterior Cerebral Artery in Symptomatic and Angiographic Evolution of Moyamoya Disease: A Preliminary Study. Frontiers in Neurology, 2021, 12, 614749.	2.4	4
7	Risk factors for postoperative ischemic complications in pediatric moyamoya disease. BMC Neurology, 2021, 21, 229.	1.8	9
8	Association between bilateral postoperative neoangiogenesis in patients with moyamoya disease. Clinical Neurology and Neurosurgery, 2020, 197, 106195.	1.4	1
9	Hemorrhagic patterns and their risk factors in patients with moyamoya disease. European Journal of Neurology, 2020, 27, 2499-2507.	3.3	9
10	Different subtypes of collateral vessels in hemorrhagic moyamoya disease with p.R4810K variant. BMC Neurology, 2020, 20, 308.	1.8	5
11	Prognostic Significance of Homocysteine Level on Neurological Outcome in Brain Arteriovenous Malformations. Disease Markers, 2020, 2020, 1-8.	1.3	O
12	FAM225B Is a Prognostic IncRNA for Patients with Recurrent Glioblastoma. Disease Markers, 2020, 2020, 1-7.	1.3	13
13	Clinical features, surgical treatment, and outcome of intracranial aneurysms associated with moyamoya disease. Journal of Clinical Neuroscience, 2020, 80, 274-279.	1.5	6
14	Digital subtraction angiographic characteristics of progression of moyamoya disease 6 months prior to surgical revascularisation. Stroke and Vascular Neurology, 2020, 5, 97-102.	3.3	5
15	Response to letter regarding article, "Angiographic characteristics in moyamoya disease with the p.R4810K variant: a propensityâ€scoreâ€matched analysisâ€s European Journal of Neurology, 2020, 27, e27.	3.3	0
16	Modifiable Risk Factors Associated With Moyamoya Disease. Stroke, 2020, 51, 2472-2479.	2.0	36
17	Angiographic characteristics in Moyamoya disease with the p.R4810K variant: a propensity scoreâ€matched analysis. European Journal of Neurology, 2020, 27, 856-863.	3.3	4
18	Postoperative collateral formation after indirect bypass for hemorrhagic moyamoya disease. BMC Neurology, 2020, 20, 28.	1.8	19

#	Article	IF	CITATIONS
19	Association Between p.R4810K Variant and Long-Term Clinical Outcome in Patients With Moyamoya Disease. Frontiers in Neurology, 2019, 10, 662.	2.4	27
20	Clinical Features and Surgical Outcomes of Patients With Moyamoya Disease and the Homozygous RNF213 p.R4810K Variant. Journal of Child Neurology, 2019, 34, 793-800.	1.4	13
21	Cranioplasty after decompressive craniectomy in hemorrhagic moyamoya disease. Journal of Clinical Neuroscience, 2019, 70, 234-237.	1.5	0
22	Association between p.R4810K Variant and Postoperative Collateral Formation in Patients with Moyamoya Disease. Cerebrovascular Diseases, 2019, 48, 77-84.	1.7	13
23	Angiographic Outcomes of Direct and Combined Bypass Surgery in Moyamoya Disease. Frontiers in Neurology, 2019, 10, 1267.	2.4	19
24	Association of Ring Finger Protein 213 Gene P.R4810k Polymorphism with Intracranial Major Artery Stenosis/Occlusion. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 1556-1564.	1.6	4
25	Encephaloduroateriosynangiosis versus conservative treatment for patients with moyamoya disease at late Suzuki stage. Journal of Clinical Neuroscience, 2018, 50, 277-280.	1.5	12
26	Clinical Features, Surgical Treatment, and Long-Term Outcome in Children with Hemorrhagic Moyamoya Disease. Journal of Stroke and Cerebrovascular Diseases, 2018, 27, 1517-1523.	1.6	15
27	Treatment of Moyamoya Disease. Neurosurgery, 2018, 65, 62-65.	1.1	20
28	The Association of the RNF213 p.R4810K Polymorphism with Quasi-Moyamoya Disease and a Review of the Pertinent Literature. World Neurosurgery, 2017, 99, 701-708.e1.	1.3	19
29	Clinical Features, Surgical Treatment, and Long-Term Outcome in Elderly Patients with Moyamoya Disease. World Neurosurgery, 2017, 100, 459-466.	1.3	22
30	Long-Term Outcome After Conservative Treatment and Direct Bypass Surgery of Moyamoya Disease at Late Suzuki Stage. World Neurosurgery, 2017, 103, 283-290.	1.3	22
31	In Reply To "Moyamoya Disease: From Hypoperfusion to Network Disruption― World Neurosurgery, 2017, 104, 1038-1039.	1.3	0
32	Steroid sulfatase and filaggrin mutations in a boy with severe ichthyosis, elevated serum IgE level and moyamoya syndrome. Gene, 2017, 628, 103-108.	2.2	4
33	Clinical Features of Hemorrhagic Moyamoya Disease in China. World Neurosurgery, 2017, 106, 224-230.	1.3	13
34	Moyamoya disease associated with ankylosing spondylitis in a 9-year-old child: a case report. Chinese Neurosurgical Journal, 2017, 3, .	0.9	0
35	Clinical Features and Long-Term Outcomes of Unilateral Moyamoya Disease. World Neurosurgery, 2016, 96, 474-482.	1.3	29
36	Prediction of High-Grade Pediatric Meningiomas: Magnetic Resonance ImagingÂFeatures Based on T1-Weighted, T2-Weighted, and Contrast-Enhanced T1-WeightedÂlmages. World Neurosurgery, 2016, 91, 89-95.	1.3	6