Ilaria Stadiotti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5250162/publications.pdf Version: 2024-02-01

ΙΙ ΑΡΙΑ STADIOTTI

#	Article	IF	CITATIONS
1	Cardiac mesenchymal stromal cells are a source of adipocytes in arrhythmogenic cardiomyopathy. European Heart Journal, 2016, 37, 1835-1846.	1.0	83
2	Effects of canagliflozin on human myocardial redox signalling: clinical implications. European Heart Journal, 2021, 42, 4947-4960.	1.0	57
3	MiR-320a as a Potential Novel Circulating Biomarker of Arrhythmogenic CardioMyopathy. Scientific Reports, 2017, 7, 4802.	1.6	39
4	Cell models of arrhythmogenic cardiomyopathy: advances and opportunities. DMM Disease Models and Mechanisms, 2017, 10, 823-835.	1.2	29
5	Calcium as a Key Player in Arrhythmogenic Cardiomyopathy: Adhesion Disorder or Intracellular Alteration?. International Journal of Molecular Sciences, 2019, 20, 3986.	1.8	29
6	Isolation and Characterization of Cardiac Mesenchymal Stromal Cells from Endomyocardial Bioptic Samples of Arrhythmogenic Cardiomyopathy Patients. Journal of Visualized Experiments, 2018, , .	0.2	24
7	Arrhythmogenic Cardiomyopathy: the Guilty Party in Adipogenesis. Journal of Cardiovascular Translational Research, 2017, 10, 446-454.	1.1	21
8	Excess TGF-β1 Drives Cardiac Mesenchymal Stromal Cells to a Pro-Fibrotic Commitment in Arrhythmogenic Cardiomyopathy. International Journal of Molecular Sciences, 2021, 22, 2673.	1.8	17
9	Oxidized LDLâ€dependent pathway as new pathogenic trigger in arrhythmogenic cardiomyopathy. EMBO Molecular Medicine, 2021, 13, e14365.	3.3	16
10	Fibrosis in Arrhythmogenic Cardiomyopathy: The Phantom Thread in the Fibro-Adipose Tissue. Frontiers in Physiology, 2020, 11, 279.	1.3	15
11	Arrhythmogenic cardiomyopathy: what blood can reveal?. Heart Rhythm, 2019, 16, 470-477.	0.3	14
12	Human Cell Modeling for Cardiovascular Diseases. International Journal of Molecular Sciences, 2020, 21, 6388.	1.8	12
13	Cardiac Biomarkers and Autoantibodies in Endurance Athletes: Potential Similarities with Arrhythmogenic Cardiomyopathy Pathogenic Mechanisms. International Journal of Molecular Sciences, 2021, 22, 6500.	1.8	12
14	Neuropeptide Y promotes adipogenesis of human cardiac mesenchymal stromal cells in arrhythmogenic cardiomyopathy. International Journal of Cardiology, 2021, 342, 94-102.	0.8	10
15	Differences in Mitochondrial Membrane Potential Identify Distinct Populations of Human Cardiac Mesenchymal Progenitor Cells. International Journal of Molecular Sciences, 2020, 21, 7467.	1.8	9
16	Human Cardiac Mesenchymal Stromal Cells From Right and Left Ventricles Display Differences in Number, Function, and Transcriptomic Profile. Frontiers in Physiology, 2020, 11, 604.	1.3	5
17	Cyclophilin A in Arrhythmogenic Cardiomyopathy Cardiac Remodeling. International Journal of Molecular Sciences, 2019, 20, 2403.	1.8	4
18	Clinical and Molecular Data Define a Diagnosis of Arrhythmogenic Cardiomyopathy in a Carrier of a Brugada-Syndrome-Associated PKP2 Mutation. Genes, 2020, 11, 571.	1.0	3

#	Article	IF	CITATIONS
19	GCN5 contributes to intracellular lipid accumulation in human primary cardiac stromal cells from patients affected by Arrhythmogenic cardiomyopathy. Journal of Cellular and Molecular Medicine, 2022, 26, 3687-3701.	1.6	3
20	Modeling Cardiomyopathies in a Dish: State-of-the-Art and Novel Perspectives on hiPSC-Derived Cardiomyocytes Maturation. Biology, 2021, 10, 730.	1.3	2
21	Pressure Overload Activates DNA-Damage Response in Cardiac Stromal Cells: A Novel Mechanism Behind Heart Failure With Preserved Ejection Fraction?. Frontiers in Cardiovascular Medicine, 0, 9, .	1.1	1