
Yuyu Pan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/524969/publications.pdf Version: 2024-02-01

ΥΠΛΗ ΡΥΝ

#	Article	IF	CITATIONS
1	Employing â^1⁄4100% Excitons in OLEDs by Utilizing a Fluorescent Molecule with Hybridized Local and Chargeâ€Transfer Excited State. Advanced Functional Materials, 2014, 24, 1609-1614.	14.9	527
2	Achieving a Significantly Increased Efficiency in Nondoped Pure Blue Fluorescent OLED: A Quasi‣quivalent Hybridized Excited State. Advanced Functional Materials, 2015, 25, 1755-1762.	14.9	381
3	A Hybridized Local and Chargeâ€Transfer Excited State for Highly Efficient Fluorescent OLEDs: Molecular Design, Spectral Character, and Full Exciton Utilization. Advanced Optical Materials, 2014, 2, 892-901.	7.3	357
4	High Yields of Singlet Excitons in Organic Electroluminescence through Two Paths of Cold and Hot Excitons. Advanced Optical Materials, 2014, 2, 510-515.	7.3	216
5	Enhanced proportion of radiative excitons in non-doped electro-fluorescence generated from an imidazole derivative with an orthogonal donor–acceptor structure. Chemical Communications, 2013, 49, 11302.	4.1	198
6	Hybridization and de-hybridization between the locally-excited (LE) state and the charge-transfer (CT) state: a combined experimental and theoretical study. Physical Chemistry Chemical Physics, 2016, 18, 24176-24184.	2.8	117
7	Highly efficient non-doped blue fluorescent OLEDs with low efficiency roll-off based on hybridized local and charge transfer excited state emitters. Chemical Science, 2020, 11, 5058-5065.	7.4	114
8	Narrowband Emission from Organic Fluorescent Emitters with Dominant Lowâ€Frequency Vibronic Coupling. Advanced Optical Materials, 2021, 9, 2001845.	7.3	98
9	High-efficiency deep blue fluorescent emitters based on phenanthro[9,10-d]imidazole substituted carbazole and their applications in organic light emitting diodes. Organic Electronics, 2014, 15, 2667-2676.	2.6	94
10	Highly Efficient Nondoped Nearâ€Ultraviolet Electroluminescence with an External Quantum Efficiency Greater Than 6.5% Based on a Carbazole–Triazole Hybrid Molecule with High and Balanced Charge Mobility. Advanced Optical Materials, 2017, 5, 1700747.	7.3	65
11	Theoretical investigation of high-efficiency organic electroluminescent material: HLCT state and hot exciton process. RSC Advances, 2017, 7, 19576-19583.	3.6	48
12	High external quantum efficiency and low efficiency roll-off achieved simultaneously in nondoped pure-blue organic light-emitting diodes based on a hot-exciton fluorescent material. Chemical Engineering Journal, 2021, 408, 127333.	12.7	44
13	High-Efficiency, Non-doped, Pure-Blue Fluorescent Organic Light-Emitting Diodes via Molecular Tuning Regulation of Hot Exciton Excited States. ACS Applied Materials & Interfaces, 2021, 13, 970-980.	8.0	38
14	Novel Strategy for Constructing High Efficiency OLED Emitters with Excited State Quinoneâ€Conformation Induced Planarization Process. Advanced Optical Materials, 2019, 7, 1900283.	7.3	34
15	Pure-Blue Fluorescence Molecule for Nondoped Electroluminescence with External Quantum Efficiency Approaching 13%. CCS Chemistry, 2021, 3, 2557-2568.	7.8	31
16	A simple D–ï€â€"A hybrid mode for highly efficient non-doped true blue OLEDs with CIE _y < 0.05 and EQE up to 6%. Journal of Materials Chemistry C, 2018, 6, 11063-11070.	5.5	29
17	Computational investigation on the large energy gap between the triplet excited-states in acenes. RSC Advances, 2017, 7, 26697-26703.	3.6	26
18	Accurate description of hybridized local and charge-transfer excited-state in donor–acceptor molecules using density functional theory. RSC Advances, 2016, 6, 108404-108410.	3.6	23

Yuyu Pan

#	ARTICLE	IF	CITATIONS
19	9-Anthryl-capped DPP-based dyes: aryl spacing induced differential optical properties. Journal of Materials Chemistry C, 2016, 4, 8006-8013.	5.5	20
20	Feasible structure-modification strategy for inhibiting aggregation-caused quenching effect and constructing exciton conversion channels in acridone-based emitters. Physical Chemistry Chemical Physics, 2019, 21, 9837-9844.	2.8	20
21	Triphenylpyrazine: methyl substitution to achieve deep blue AIE emitters. Journal of Materials Chemistry C, 2019, 7, 13047-13051.	5.5	17
22	Multiple "Hot exciton―channel molecular design in organic electroluminescence materials: a theoretical investigation. Materials Advances, 2021, 2, 1351-1357.	5.4	12
23	Novel deep-blue hot exciton material for high-efficiency nondoped organic light-emitting diodes. Journal of Materials Chemistry C, 2022, 10, 6596-6602.	5.5	11
24	Theoretical investigation of the effects of various substituents on the large energy gap between triplet excited-states of anthracene. RSC Advances, 2018, 8, 27979-27987.	3.6	10
25	Preparation of Photoresponsive Film via Electrodeposition Approach for Readyâ€ŧoâ€Use Solar Thermal Fuel Device. Advanced Materials Interfaces, 2020, 7, 2001079.	3.7	6
26	Tailored Polymeric Holeâ€Transporting Materials Inducing Highâ€Quality Crystallization of Perovskite for Efficient Inverted Photovoltaic Devices. Small, 2022, , 2106632.	10.0	6
27	A quinacridone derivative with intensive emission in both solution and the solid state <i>via</i> a facile preparation for cell imaging applications. Journal of Materials Chemistry B, 2019, 7, 3192-3196.	5.8	5
28	Theoretical study on the mechanism of hot excitons combined with aggregation-induced emission in efficient red fluorescent molecules. Physical Chemistry Chemical Physics, 2022, 24, 17632-17640.	2.8	5
29	Theoretical study of the formation process of HLCT state in multiple donor–acceptor molecular systems. Computational and Theoretical Chemistry, 2021, 1200, 113247.	2.5	3
30	Nondoped, deep-blue, organic light-emitting diodes with low-efficiency roll-off based on a simple anthracene–triazole hybrid fluorescent molecule. Dyes and Pigments, 2021, 195, 109672.	3.7	3
31	Donorâ€Acceptor Molecule Based High Performance Photothermal Organic Material for Efficient Waterâ€Electric Cogeneration. Angewandte Chemie, 0, , .	2.0	0