
José A GonzÃ;lez-Marcos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5249672/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulation-based optimization of cycle timing for CO2 capture and hydrogenation with dual function catalyst. Catalysis Today, 2022, 394-396, 314-324.	2.2	11
2	Intrinsic kinetics of CO2 methanation on low-loaded Ni/Al2O3 catalyst: Mechanism, model discrimination and parameter estimation. Journal of CO2 Utilization, 2022, 57, 101888.	3.3	17
3	Tuning basicity of dual function materials widens operation temperature window for efficient CO2 adsorption and hydrogenation to CH4. Journal of CO2 Utilization, 2022, 58, 101922.	3.3	26
4	Applicability of LaNiO3-derived catalysts as dual function materials for CO2 capture and in-situ conversion to methane. Fuel, 2022, 320, 123842.	3.4	14
5	Study on the promotional effect of lanthana addition on the performance of hydroxyapatite-supported Ni catalysts for the CO2 methanation reaction. Applied Catalysis B: Environmental, 2022, 314, 121500.	10.8	29
6	Aging studies on dual function materials Ru/Ni-Na/Ca-Al2O3 for CO2 adsorption and hydrogenation to CH4. Journal of Environmental Chemical Engineering, 2022, 10, 107951.	3.3	6
7	Kinetics, Model Discrimination, and Parameters Estimation of CO ₂ Methanation on Highly Active Ni/CeO ₂ Catalyst. Industrial & Engineering Chemistry Research, 2022, 61, 10419-10435.	1.8	14
8	Alternate cycles of CO ₂ storage and <i>in situ</i> hydrogenation to CH ₄ on Ni–Na ₂ CO ₃ /Al ₂ O ₃ : influence of promoter addition and calcination temperature. Sustainable Energy and Fuels, 2021, 5, 1194-1210.	2.5	24
9	Design of CeO ₂ -supported LaNiO ₃ perovskites as precursors of highly active catalysts for CO ₂ methanation. Catalysis Science and Technology, 2021, 11, 6065-6079.	2.1	16
10	Enhancing the CO2 methanation activity of Î ³ -Al2O3 supported mono- and bi-metallic catalysts prepared by glycerol assisted impregnation. Applied Catalysis B: Environmental, 2021, 296, 120322.	10.8	25
11	Effect of metal loading on the CO2 methanation: A comparison between alumina supported Ni and Ru catalysts. Catalysis Today, 2020, 356, 419-432.	2.2	111
12	lsotopic and in situ DRIFTS study of the CO2 methanation mechanism using Ni/CeO2 and Ni/Al2O3 catalysts. Applied Catalysis B: Environmental, 2020, 265, 118538.	10.8	199
13	Effect of vanadia loading on acidic and redox properties of VOx/TiO2 for the simultaneous abatement of PCDD/Fs and NOx. Journal of Industrial and Engineering Chemistry, 2020, 81, 440-450.	2.9	36
14	Modeling the CO2 capture and in situ conversion to CH4 on dual function Ru-Na2CO3/Al2O3 catalyst. Journal of CO2 Utilization, 2020, 42, 101351.	3.3	22
15	Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: tailoring the Ni-CeO2 contact. Applied Materials Today, 2020, 19, 100591.	2.3	30
16	Ni/LnOx Catalysts (Ln=La, Ce or Pr) for CO ₂ Methanation. ChemCatChem, 2019, 11, 810-819.	1.8	44
17	Ni loading effects on dual function materials for capture and in-situ conversion of CO2 to CH4 using CaO or Na2CO3. Journal of CO2 Utilization, 2019, 34, 576-587.	3.3	109
18	Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts. Applied Catalysis B: Environmental, 2019, 256, 117845.	10.8	100

#	Article	IF	CITATIONS
19	Understanding the Role of Nanoâ€Aluminum Oxide in Allâ€Solidâ€State Lithiumâ€Sulfur Batteries. ChemElectroChem, 2019, 6, 326-330.	1.7	28
20	Review—Solid Electrolytes for Safe and High Energy Density Lithium-Sulfur Batteries: Promises and Challenges. Journal of the Electrochemical Society, 2018, 165, A6008-A6016.	1.3	146
21	Ni catalysts with La as promoter supported over Y- and BETA- zeolites for CO2 methanation. Applied Catalysis B: Environmental, 2018, 238, 393-403.	10.8	175
22	Lithium Bis(fluorosulfonyl)imide/Poly(ethylene oxide) Polymer Electrolyte for All Solid-State Li–S Cell. Journal of Physical Chemistry Letters, 2017, 8, 1956-1960.	2.1	166
23	Steady-state NH 3 -SCR global model and kinetic parameter estimation for NO x removal in diesel engine exhaust aftertreatment with Cu/chabazite. Catalysis Today, 2017, 296, 95-104.	2.2	32
24	Tailoring dual redox-acid functionalities in VOx/TiO2/ZSM5 catalyst for simultaneous abatement of PCDD/Fs and NOx from municipal solid waste incineration. Applied Catalysis B: Environmental, 2017, 205, 310-318.	10.8	47
25	Polymer-Rich Composite Electrolytes for All-Solid-State Li–S Cells. Journal of Physical Chemistry Letters, 2017, 8, 3473-3477.	2.1	106
26	Optimal Operating Conditions of Coupled Sequential NOx Storage/Reduction and Cu/CHA Selective Catalytic Reduction Monoliths. Topics in Catalysis, 2017, 60, 30-39.	1.3	8
27	The effect of deactivation of Hâ€zeolites on product selectivity in the oxidation of chlorinated <scp>VOCs</scp> (trichloroethylene). Journal of Chemical Technology and Biotechnology, 2016, 91, 318-326.	1.6	13
28	Metal-loaded ZSM5 zeolites for catalytic purification of dioxin/furans and NO containing exhaust gases from MWI plants: Effect of different metal cations. Applied Catalysis B: Environmental, 2016, 184, 238-245.	10.8	43
29	Catalytic oxidation of trichloroethylene over Fe-ZSM-5: Influence of the preparation method on the iron species and the catalytic behavior. Applied Catalysis B: Environmental, 2016, 180, 210-218.	10.8	101
30	Performance of Cu-ZSM-5 in a Coupled Monolith NSR-SCR System for NOx Removal in Lean-Burn Engine Exhaust. Topics in Catalysis, 2016, 59, 259-267.	1.3	5
31	Role of surface vanadium oxide coverage support on titania for the simultaneous removal of o-dichlorobenzene and NOx from waste incinerator flue gas. Catalysis Today, 2015, 254, 2-11.	2.2	39
32	Catalytic Oxidation of Volatile Organic Compounds: Chlorinated Hydrocarbons. , 2014, , 91-131.		0
33	State of the art in catalytic oxidation of chlorinated volatile organic compounds. Chemical Papers, 2014, 68, .	1.0	85
34	Catalytic activity of regenerated catalyst after the oxidation of 1,2-dichloroethane and trichloroethylene. Chemical Engineering Journal, 2014, 241, 200-206.	6.6	36
35	Influence of the washcoat characteristics on NH3-SCR behavior of Cu-zeolite monoliths. Catalysis Today, 2013, 216, 82-89.	2.2	22
36	Screening of Fe–Cu-Zeolites Prepared by Different Methodology for Application in NSR–SCR Combined DeNOx Systems. Topics in Catalysis, 2013, 56, 215-221.	1.3	17

José A GonzÃilez-Marcos

#	Article	IF	CITATIONS
37	Strategies to enhance the stability of h-bea zeolite in the catalytic oxidation of Cl-VOCs: 1,2-Dichloroethane. Catalysis Today, 2013, 213, 192-197.	2.2	31
38	Deactivation of H-zeolites during catalytic oxidation of trichloroethylene. Journal of Catalysis, 2012, 296, 165-174.	3.1	70
39	On the effect of reduction and ageing on the TWC activity of Pd/Ce0.68Zr0.32O2 under simulated automotive exhausts. Catalysis Today, 2012, 180, 88-95.	2.2	25
40	Catalytic oxidation of trichloroethylene over Fe-zeolites. Catalysis Today, 2011, 176, 357-360.	2.2	30
41	Performance of NO storage–reduction catalyst in the temperature–reductant concentration domain by response surface methodology. Chemical Engineering Journal, 2011, 169, 58-67.	6.6	25
42	Optimization of process parameters on the extrusion of honeycomb shaped monolith of H-ZSM-5 zeolite. Chemical Engineering Journal, 2010, 162, 415-423.	6.6	57
43	Stability of protonic zeolites in the catalytic oxidation of chlorinated VOCs (1,2-dichloroethane). Applied Catalysis B: Environmental, 2009, 88, 533-541.	10.8	95
44	Pervaporation of 50 wt % ethanol–water mixtures with poly(1-trimethylsilyl-1-propyne) membranes at high temperatures. Journal of Applied Polymer Science, 2007, 103, 2843-2848.	1.3	23
45	Kinetics of Pd/alumina catalysed 1,2-dichloroethane gas-phase oxidation. Chemical Engineering Science, 2006, 61, 3564-3576.	1.9	41
46	Intercooled Double-Bed Reactor for LTWGS Reaction with Catalyst Poisoning by Chlorine: Inlet Temperatures for the Maximization of the Production. International Journal of Chemical Reactor Engineering, 2006, 4, .	0.6	0
47	Optimization of inlet temperature for deactivating LTWGS reactor performance. AICHE Journal, 2005, 51, 2016-2023.	1.8	3
48	Kinetics of the Low-Temperature WGS Reaction over a CuO/ZnO/Al2O3 Catalyst. Industrial & Engineering Chemistry Research, 2005, 44, 41-50.	1.8	90
49	Effect of operation conditions in the pervaporation of ethanol-water mixtures with poly(1-trimethylsilyl-1-propyne) membranes. Journal of Applied Polymer Science, 2004, 94, 1395-1403.	1.3	33
50	The reaction pathway and kinetic mechanism of the catalytic oxidation of gaseous lean TCE on Pd/alumina catalysts. Journal of Catalysis, 2003, 214, 130-135.	3.1	47
51	Pervaporation performance of PTMSP membranes at high temperatures. Journal of Applied Polymer Science, 2003, 90, 2255-2259.	1.3	14
52	Kinetics of the Catalytic Oxidation of Lean Trichloroethylene in Air over Pd/Alumina. Industrial & Engineering Chemistry Research, 2003, 42, 6007-6011.	1.8	16
53	Pervaporation of ethanol—water mixtures through poly(1-trimethylsilyl-1-propyne) (PTMSP) membranes. Desalination, 2002, 149, 61-65.	4.0	59
54	Kinetic considerations of three-way catalysis in automobile exhaust converters. Applied Catalysis B: Environmental, 2001, 32, 243-256.	10.8	45

#	Article	IF	CITATIONS
55	Promotion of Ru/ZrO2 catalysts by platinum. Studies in Surface Science and Catalysis, 2000, 143, 555-563.	1.5	1
56	Enhancement of the catalytic oxidation of hydrogen-lean chlorinated VOCs in the presence of hydrogen-supplying compounds. Applied Catalysis B: Environmental, 2000, 24, 33-43.	10.8	132
57	Deep catalytic oxidation of chlorinated VOC mixtures from groundwater stripping emissions. Studies in Surface Science and Catalysis, 2000, 130, 1229-1234.	1.5	12
58	Study of the Pretreatment Chemistry and Thermal Stability of Zirconia Supported Ru–Pt Catalysts. Journal of Catalysis, 1999, 187, 24-29.	3.1	6
59	Kinetics of weight loss and chain scission in the thermooxidative degradation of poly[1-(trimethylsilyl)-1-propyne] films. Journal of Polymer Science Part A, 1999, 37, 4309-4317.	2.5	5
60	Influence of water and hydrocarbon processed in feedstream on the three-way behaviour of platinum-alumina catalysts. Applied Catalysis B: Environmental, 1997, 12, 61-79.	10.8	58
61	Modeling the degradation kinetics of poly(2-hexyne) membranes via gel permeation chromatography. Journal of Membrane Science, 1997, 129, 83-91.	4.1	4
62	Yield and Purity Comparison of Dimethoate Manufacturing Processes:Â Homogeneous Reaction, Two-Phase Uncatalyzed Reaction, and Phase Transfer Catalysis. Industrial & Engineering Chemistry Research, 1996, 35, 4389-4393.	1.8	0
63	Effect of molecular weight and presence of antioxidant in thermooxidative degradation of poly(2-hexyne) films. Chemical Engineering Science, 1996, 51, 2811-2816.	1.9	1
64	Prediction of lifetime of poly(2-hexyne) films through the kinetics of thermooxidative degradation from thermogravimetric and molecular weight data. Chemical Engineering Science, 1996, 51, 1113-1120.	1.9	5
65	Preparation, activity and durability of promoted platinum catalysts for automotive exhaust control. Applied Catalysis B: Environmental, 1994, 3, 191-204.	10.8	23
66	Surface features and catalytic performance of platinum/alumina catalysts in slurry-phase hydrogenation. Industrial & Engineering Chemistry Research, 1993, 32, 2457-2463.	1.8	2
67	Behavior of highly dispersed platinum catalysts in liquid-phase hydrogenations. Industrial & Engineering Chemistry Research, 1993, 32, 1035-1040.	1.8	5
68	Promoter Effects on Platinum Catalysts for Automotive Exhaust Control. Studies in Surface Science and Catalysis, 1993, 75, 2689-2692.	1.5	0
69	Optimal inlet temperature trajectories for adiabatic packed reactors with catalyst decay. Chemical Engineering Science, 1992, 47, 1495-1501.	1.9	18
70	Kinetics of isomerization of maleic acid using ammonium bromide and ammonium peroxydisulfate as catalyst. Industrial & Engineering Chemistry Research, 1991, 30, 2138-2143.	1.8	2
71	Analysis of combined temperature and space time trajectories to maintain constant the exit conversion of fixed bed reactors with catalyst decay. The Chemical Engineering Journal, 1991, 47, 105-112.	0.4	1
72	Techno-economic optimization of isomerization of maleic acid to fumaric acid using ammonium bromide as a soluble catalyst. Chemical Engineering and Processing: Process Intensification, 1991, 30, 15-21.	1.8	1

#	Article	IF	CITATIONS
73	Sequential design of experiments for optimal model discrimination and parameter estimation in isopropanol dehydration. Chemical Engineering Science, 1991, 46, 2161-2166.	1.9	1
74	Analysis of the lumped and distributed optimal temperature trajectories for packed bed reactors with concentration dependent catalyst deactivation. Canadian Journal of Chemical Engineering, 1990, 68, 860-866.	0.9	5
75	Adsorption studies of different reagents on supported palladium catalysts. Applied Catalysis, 1990, 60, 1-12.	1.1	8
76	Improvements in batch distillation startup. Industrial & Engineering Chemistry Research, 1987, 26, 745-750.	1.8	14
77	Relation Between the Preparation and the Morphology of Silica-Alumina Gels. Adsorption Science and Technology, 1987, 4, 149-161.	1.5	3
78	Optimal temperature policies by distributed control for reactors with lhhw catalyst deactivation. Canadian Journal of Chemical Engineering, 1987, 65, 36-41.	0.9	7
79	Surface Acidity of Silica-Alumina Catalysts in Relation to the Preparation Variables. Adsorption Science and Technology, 1986, 3, 95-108.	1.5	2
80	Kinetics of the selective hydrogenation of phenol to cyclohexanone over a Pd-alumina catalyst. Reaction Kinetics and Catalysis Letters, 1986, 32, 505-512.	0.6	17