Xiao-Bo Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5249665/publications.pdf

Version: 2024-02-01

38 papers	577 citations	687363 13 h-index	22 g-index
38	38	38	346
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Geology and Genesis of the Unkurtash Intrusion-Related Gold Deposit, Tien Shan, Kyrgyzstan. Economic Geology, 2022, 117, 1073-1103.	3.8	6
2	Neoproterozoic tectonic shift from collisional orogenesis to intraplate extension in the Yili Block, southern Central Asian Orogenic Belt. Precambrian Research, 2022, 374, 106626.	2.7	4
3	Two episodes of Late Paleozoic mafic magmatism in the western Tianshan Orogen: From Carboniferous subduction to Permian post-collisional extension. Gondwana Research, 2022, 109, 518-535.	6.0	2
4	Petrogenesis of volcanic rocks of the Devonian – Carboniferous Dahalajunshan Formation, Western Tianshan: Implications for crustal growth in an accretionary orogen. Lithos, 2021, 386-387, 106003.	1.4	7
5	Late Carboniferous – Early Permian mafic dikes and granitoids in the heart of the Western Tianshan Orogen, NW China: Implications for a tectonic transition from a syn- to post-collisional setting. Lithos, 2021, 400-401, 106417.	1.4	3
6	Cooling and exhumation of the Late Paleozoic Tulasu epithermal gold system, Western Tianshan, NW China: implications for preservation of Pre-Mesozoic epithermal deposits. Journal of the Geological Society, 2021, 178, .	2.1	8
7	Volcanic–plutonic connection and associated Auâ€Cu mineralization of the Tulasu ore district, Western Tianshan, NW China: Implications for mineralization potential in Palaeozoic arc terranes. Geological Journal, 2020, 55, 2318-2341.	1.3	13
8	Provenance of the uppermost clastic rocks of the Lower Cretaceous Kezilesu Group from the Ulugqat Basin, Xinjiang, NW China and its tectonic implications: Insights from sedimentary records and detrital zircon U–Pb geochronology. Geological Journal, 2020, 55, 2080-2109.	1.3	3
9	Genesis of the Tuokesai Zn-Pb deposit in the Sayram Massif, Xinjiang, NW China: Constraints from geology, jasperite geochemistry and Si-S-Pb isotopes. Ore Geology Reviews, 2020, 121, 103479.	2.7	5
10	Genesis of the Aqishan skarn Zn-Pb deposit in the Eastern Tianshan, NW China: Constraints from geology, geochronology and Hf-S-Pb isotopic geochemistry. Ore Geology Reviews, 2020, 123, 103608.	2.7	10
11	Genesis of the giant Caixiashan Zn-Pb deposit in Eastern Tianshan, NW China: Constraints from geology, geochronology and S-Pb isotopic geochemistry. Ore Geology Reviews, 2020, 119, 103366.	2.7	12
12	Multiple episodes of Late Paleozoic Cu-Au mineralization in the Chatkal-Kurama terrane: New constraints from the Kuru-Tegerek and Bozymchak skarn deposits, Kyrgyzstan. Ore Geology Reviews, 2019, 113, 103077.	2.7	15
13	Geological, geochronological and geochemical characteristics and genesis of the Arqiale skarn Zn-Pb deposit, Western Tianshan, Northwest China. Ore Geology Reviews, 2019, 106, 79-96.	2.7	10
14	Redox reactions control Cu and Fe isotope fractionation in a magmatic Ni–Cu mineralization system. Geochimica Et Cosmochimica Acta, 2019, 249, 42-58.	3.9	43
15	Structural characterization of the Katebasu gold deposit, Xinjiang, China: Tectonic correlation with the amalgamation of the western Tianshan. Ore Geology Reviews, 2019, 107, 888-902.	2.7	11
16	Source and possible leaching process of ore metals in the Uragen sandstone-hosted Zn-Pb deposit, Xinjiang, China: Constraints from lead isotopes and rare earth elements geochemistry. Ore Geology Reviews, 2019, 106, 56-78.	2.7	11
17	Metallogenesis of the Late Palaeozoic Axi–Tawuerbieke Au–Pb–Zn district in the Tulasu Basin, Western Tianshan, China: Constraints from geological characteristics and isotope geochemistry. Geological Journal, 2018, 53, 3030-3050.	1.3	12
18	A ductile to brittle shear zone–hosted Cu mineralization: Geological, geochronological, geochemical and fluid inclusion studies of the Lingyun Cu deposit, southern Tianshan, NW China. Ore Geology Reviews, 2018, 94, 155-171.	2.7	2

#	Article	IF	Citations
19	Geology, geochronology and geochemistry of the Dabate Cu–Mo deposit, northern Chinese Tien Shan: Implications for spatial separation of copper and molybdenum mineralization. Ore Geology Reviews, 2018, 92, 542-557.	2.7	16
20	Age and petrogenesis of the Andagul granodiorite and its implications on gold mineralization of the Kassan region, western Kyrgyzstan Tian Shan. Ore Geology Reviews, 2018, 101, 54-73.	2.7	4
21	Temporal variations in the mantle source beneath the Eastern Tianshan nickel belt and implications for Ni–Cu mineralization potential. Lithos, 2018, 314-315, 597-616.	1.4	15
22	Diabase-hosted copper mineralization in the Qunjsai deposit, West Tianshan, NW China: Geological, geochemical and geochronological characteristics and mineralization mechanism. Ore Geology Reviews, 2018, 92, 430-448.	2.7	7
23	Genesis of the Zhengguang gold deposit in the Duobaoshan ore field, Heilongjiang Province, NE China: Constraints from geology, geochronology and S-Pb isotopic compositions. Ore Geology Reviews, 2017, 84, 202-217.	2.7	36
24	Multi-stage gold mineralization in the Taldybulak Levoberezhny deposit, Tien Shan, Kyrgyzstan: Reply to comment by Boris Trifonov on "Re–Os pyrite and U–Pb zircon geochronology from the Taldybulak Levoberezhny gold deposit: Insight for Cambrian metallogeny of the Kyrgyz northern Tien Shan― Ore Geology Reviews, 2017, 82, 217-231.	2.7	7
25	Copper isotope fractionation during sulfide-magma differentiation in the Tulaergen magmatic Ni–Cu deposit, NW China. Lithos, 2017, 286-287, 206-215.	1.4	53
26	Zircon and molybdenite geochronology and geochemistry of the Kalmakyr porphyry Cu–Au deposit, Almalyk district, Uzbekistan: Implications for mineralization processes. Ore Geology Reviews, 2017, 86, 807-824.	2.7	20
27	Multiple-stage mineralization in the Sawayaerdun orogenic gold deposit, western Tianshan, Xinjiang: Constraints from paragenesis, EMPA analyses, Re–Os dating of pyrite (arsenopyrite) and U–Pb dating of zircon from the host rocks. Ore Geology Reviews, 2017, 81, 326-341.	2.7	20
28	Multiple and prolonged porphyry Cu–Au mineralization and alteration events in the Halasu deposit, Chinese Altai, Xinjiang, northwestern China. Geoscience Frontiers, 2016, 7, 799-809.	8.4	23
29	Variable mineralization processes during the formation of the Permian Hulu Ni-Cu sulfide deposit, Xinjiang, Northwestern China. Journal of Asian Earth Sciences, 2016, 126, 1-13.	2.3	14
30	Origin of anomalously Ni-rich parental magmas and genesis of the Huangshannan Ni–Cu sulfide deposit, Central Asian Orogenic Belt, Northwestern China. Ore Geology Reviews, 2016, 77, 57-71.	2.7	20
31	Geology, geochronology and geochemistry of granitic intrusions and the related ores at the Hongshan Cu-polymetallic deposit: Insights into the Late Cretaceous post-collisional porphyry-related mineralization systems in the southern Yidun arc, SW China. Ore Geology Reviews, 2016, 77, 25-42.	2.7	26
32	Magmatic Cu–Ni sulfide mineralization of the Huangshannan mafic–untramafic intrusion, Eastern Tianshan, China. Journal of Asian Earth Sciences, 2015, 105, 155-172.	2.3	38
33	Re–Os pyrite and U–Pb zircon geochronology from the Taldybulak Levoberezhny gold deposit: Insight for Cambrian metallogeny of the Kyrgyz northern Tien Shan. Ore Geology Reviews, 2015, 67, 78-89.	2.7	16
34	Epithermal Au and polymetallic mineralization in the Tulasu Basin, western Tianshan, NW China: Potential for the discovery of porphyry CuAu deposits. Ore Geology Reviews, 2014, 60, 76-96.	2.7	38
35	Microgranular enclaves in island-arc andesites: A possible link between known epithermal Au and potential porphyry Cu–Au deposits in the Tulasu ore cluster, western Tianshan, Xinjiang, China. Journal of Asian Earth Sciences, 2014, 85, 210-223.	2.3	42
36	Thermochronological constraints on the exhumation history of the Carboniferous Katebasu gold deposit, western Tianshan gold belt, NW China. Geological Society Special Publication, 0, , SP516-2020-201.	1.3	0

#	Article	IF	CITATIONS
37	The Changshagou gold deposit, Eastern Tianshan, NW China: Orogenic gold mineralization overprinting a Porphyry gold occurrence. Geological Society Special Publication, 0, , SP516-2020-248.	1.3	4
38	Continental growth during Devono-Carboniferous switching accretionary tectonics: the Katebasu granitoid stock, Central Tianshan, NW China. International Journal of Earth Sciences, 0, , 1.	1.8	1