peng jing Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5249601/publications.pdf Version: 2024-02-01

		687363	713466
22	1,111	13	21
papers	citations	h-index	g-index
22	22	22	946
all docs	docs citations	times ranked	citing authors

PENC LINC 7HU

#	Article	IF	CITATIONS
1	Chiral derivatives of covalent organic framework TpBD (NH ₂) ₂ used as stationary phases in gas chromatography. Chirality, 2022, 34, 462-472.	2.6	7
2	Enantioselective resolutions by highâ€performance liquid choromatography using chiral inorganic mesoporous silica. Separation Science Plus, 2021, 4, 77-85.	0.6	3
3	A [3Â+Â6] prismatic homochiral organic cage used as stationary phase for gas chromatography. Microchemical Journal, 2021, 170, 106650.	4.5	7
4	Chiral metalâ€organic cages used as stationary phase for enantioseparations in capillary electrochromatography. Electrophoresis, 2020, 41, 104-111.	2.4	19
5	Recent advances of application of porous molecular cages for enantioselective recognition and separation. Journal of Separation Science, 2020, 43, 134-149.	2.5	55
6	Gas chromatographic separation of enantiomers on novel chiral stationary phases. TrAC - Trends in Analytical Chemistry, 2020, 124, 115808.	11.4	72
7	Enantiomeric Separation on a Homochiral Porous Organic Cage-Based Chiral Stationary Phase by Gas Chromatography. Chromatographia, 2020, 83, 703-713.	1.3	11
8	Recent development trends for chiral stationary phases based on chitosan derivatives, cyclofructan derivatives and chiral porous materials in high performance liquid chromatography. Journal of Separation Science, 2019, 42, 6-20.	2.5	63
9	A novel chiral inorganic mesoporous silica used as a stationary phase in GC. Chirality, 2019, 31, 1053-1059.	2.6	17
10	Chiral Inorganic mesoporous materials used as the stationary phase in GC. Separation Science Plus, 2019, 2, 432-439.	0.6	9
11	An Enantioselective Potentiometric Sensor for 2-Amino-1-Butanol Based on Chiral Porous Organic Cage CC3-R. Molecules, 2019, 24, 420.	3.8	9
12	Enantioseparations by Gas Chromatography Using Porous Organic Cages as Stationary Phase. Methods in Molecular Biology, 2019, 1985, 45-55.	0.9	2
13	A highly ordered chiral inorganic mesoporous material used as stationary phase for high-resolution gas chromatographic separations. Journal of Chromatography A, 2018, 1557, 99-106.	3.7	22
14	Homochiral porous organic cage used as stationary phase for open tubular capillary electrochromatography. Analytica Chimica Acta, 2018, 999, 169-175.	5.4	64
15	Homochiral Metal–Organic Cage for Gas Chromatographic Separations. Analytical Chemistry, 2018, 90, 9182-9188.	6.5	59
16	A chiral porous organic cage for molecular recognition using gas chromatography. Analytica Chimica Acta, 2016, 903, 156-163.	5.4	60
17	Homochiral Porous Organic Cage with High Selectivity for the Separation of Racemates in Gas Chromatography. Analytical Chemistry, 2015, 87, 7817-7824.	6.5	121
18	Highly selective separation of enantiomers using a chiral porous organic cage. Journal of Chromatography A, 2015, 1426, 174-182.	3.7	60

PENG JING ZHU

#	Article	IF	CITATIONS
19	Chiral metal–organic framework used as stationary phases for capillary electrochromatography. Analytica Chimica Acta, 2014, 830, 49-55.	5.4	85
20	Novel Inorganic Mesoporous Material with Chiral Nematic Structure Derived from Nanocrystalline Cellulose for High-Resolution Gas Chromatographic Separations. Analytical Chemistry, 2014, 86, 9595-9602.	6.5	72
21	Chiral Metal–Organic Frameworks for High-Resolution Gas Chromatographic Separations. Journal of the American Chemical Society, 2011, 133, 11892-11895.	13.7	293
22	Separation of enantiomers by openâ€tubular capillary electrochromatography using (R)â€1,1′â€biâ€2â€naph derivatives as chiral stationary phases. Separation Science Plus, 0, , .	thol 0.6	1