
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5249405/publications.pdf Version: 2024-02-01

ITZHAK FRIED

#	Article	IF	CITATIONS
1	Cellular networks underlying human spatial navigation. Nature, 2003, 425, 184-188.	27.8	1,102
2	Single-Neuron Responses in Humans during Execution and Observation of Actions. Current Biology, 2010, 20, 750-756.	3.9	1,062
3	Broadband Shifts in Local Field Potential Power Spectra Are Correlated with Single-Neuron Spiking in Humans. Journal of Neuroscience, 2009, 29, 13613-13620.	3.6	792
4	Hippocampal and Entorhinal Cortex High-Frequency Oscillations (100-500 Hz) in Human Epileptic Brain and in Kainic Acid-Treated Rats with Chronic Seizures. Epilepsia, 1999, 40, 127-137.	5.1	674
5	High-frequency oscillations in human brain. Hippocampus, 1999, 9, 137-142.	1.9	617
6	Single Neuron Activity in Human Hippocampus and Amygdala during Recognition of Faces and Objects. Neuron, 1997, 18, 753-765.	8.1	470
7	Category-specific visual responses of single neurons in the human medial temporal lobe. Nature Neuroscience, 2000, 3, 946-953.	14.8	450
8	Direct recordings of grid-like neuronal activity in human spatial navigation. Nature Neuroscience, 2013, 16, 1188-1190.	14.8	431
9	Memory Enhancement and Deep-Brain Stimulation of the Entorhinal Area. New England Journal of Medicine, 2012, 366, 502-510.	27.0	412
10	Internally Generated Reactivation of Single Neurons in Human Hippocampus During Free Recall. Science, 2008, 322, 96-101.	12.6	394
11	Internally Generated Preactivation of Single Neurons in Human Medial Frontal Cortex Predicts Volition. Neuron, 2011, 69, 548-562.	8.1	383
12	Invasive recordings from the human brain: clinical insights and beyond. Nature Reviews Neuroscience, 2005, 6, 35-47.	10.2	374
13	Human hippocampal theta activity during virtual navigation. Hippocampus, 2005, 15, 881-889.	1.9	346
14	Brain Oscillations Control Timing of Single-Neuron Activity in Humans. Journal of Neuroscience, 2007, 27, 3839-3844.	3.6	316
15	Imagery neurons in the human brain. Nature, 2000, 408, 357-361.	27.8	315
16	Cerebral microdialysis combined with single-neuron and electroencephalographic recording in neurosurgical patients. Journal of Neurosurgery, 1999, 91, 697-705.	1.6	196
17	Latency and Selectivity of Single Neurons Indicate Hierarchical Processing in the Human Medial Temporal Lobe. Journal of Neuroscience, 2008, 28, 8865-8872.	3.6	188
18	Sparse Representation in the Human Medial Temporal Lobe. Journal of Neuroscience, 2006, 26, 10232-10234.	3.6	183

#	Article	IF	CITATIONS
19	A sense of direction in human entorhinal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6487-6492.	7.1	179
20	Single-neuron correlates of subjective vision in the human medial temporal lobe. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8378-8383.	7.1	178
21	Electric current stimulates laughter. Nature, 1998, 391, 650-650.	27.8	171
22	Explicit Encoding of Multimodal Percepts by Single Neurons in the Human Brain. Current Biology, 2009, 19, 1308-1313.	3.9	168
23	Human Intracranial Recordings and Cognitive Neuroscience. Annual Review of Psychology, 2012, 63, 511-537.	17.7	148
24	Selective neuronal lapses precede human cognitive lapses following sleep deprivation. Nature Medicine, 2017, 23, 1474-1480.	30.7	142
25	On-line, voluntary control of human temporal lobe neurons. Nature, 2010, 467, 1104-1108.	27.8	140
26	Theta Oscillations in the Human Medial Temporal Lobe during Real-World Ambulatory Movement. Current Biology, 2017, 27, 3743-3751.e3.	3.9	137
27	A category-specific response to animals in the right human amygdala. Nature Neuroscience, 2011, 14, 1247-1249.	14.8	129
28	Behavioral correlates of human hippocampal delta and theta oscillations during navigation. Journal of Neurophysiology, 2011, 105, 1747-1755.	1.8	122
29	Rapid Encoding of New Memories by Individual Neurons in the Human Brain. Neuron, 2015, 87, 220-230.	8.1	113
30	Ictal onset patterns of local field potentials, high frequency oscillations, and unit activity in human mesial temporal lobe epilepsy. Epilepsia, 2016, 57, 111-121.	5.1	108
31	Persistent Single-Neuron Activity during Working Memory in the Human Medial Temporal Lobe. Current Biology, 2017, 27, 1026-1032.	3.9	104
32	Single-neuron activity and eye movements during human REM sleep and awake vision. Nature Communications, 2015, 6, 7884.	12.8	100
33	Increased dopamine release in the human amygdala during performance of cognitive tasks. Nature Neuroscience, 2001, 4, 201-206.	14.8	96
34	Human medial temporal lobe neurons respond preferentially to personally relevant images. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 21329-21334.	7.1	93
35	Phase-tuned neuronal firing encodes human contextual representations for navigational goals. ELife, 2018, 7, .	6.0	91
36	Theta-burst microstimulation in the human entorhinal area improves memory specificity. ELife, 2017, 6, .	6.0	83

#	Article	IF	CITATIONS
37	Lowâ€voltage fast seizures in humans begin with increased interneuron firing. Annals of Neurology, 2018, 84, 588-600.	5.3	81
38	Phase precession in the human hippocampus and entorhinal cortex. Cell, 2021, 184, 3242-3255.e10.	28.9	75
39	Modulation of Human Memory by Deep Brain Stimulation of the Entorhinal-Hippocampal Circuitry. Neuron, 2020, 106, 218-235.	8.1	72
40	A Tradeoff in the Neural Code across Regions and Species. Cell, 2019, 176, 597-609.e18.	28.9	71
41	Boundary-anchored neural mechanisms of location-encoding for self and others. Nature, 2021, 589, 420-425.	27.8	70
42	Ripples on spikes show increased phaseâ€amplitude coupling in mesial temporal lobe epilepsy seizureâ€onset zones. Epilepsia, 2016, 57, 1916-1930.	5.1	69
43	Local Field Potentials and Spikes in the Human Medial Temporal Lobe are Selective to Image Category. Journal of Cognitive Neuroscience, 2007, 19, 479-492.	2.3	66
44	Inhibitory and Excitatory Responses of Single Neurons in the Human Medial Temporal Lobe during Recognition of Faces and Objects. Cerebral Cortex, 2002, 12, 575-584.	2.9	61
45	Timing of Single-Neuron and Local Field Potential Responses in the Human Medial Temporal Lobe. Current Biology, 2014, 24, 299-304.	3.9	60
46	Wireless Programmable Recording and Stimulation of Deep Brain Activity in Freely Moving Humans. Neuron, 2020, 108, 322-334.e9.	8.1	57
47	Long-term coding of personal and universal associations underlying the memory web in the human brain. Nature Communications, 2016, 7, 13408.	12.8	54
48	Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy. Epilepsia, 2017, 58, 1972-1984.	5.1	46
49	Volition and Action in the Human Brain: Processes, Pathologies, and Reasons. Journal of Neuroscience, 2017, 37, 10842-10847.	3.6	46
50	A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells. BMC Neuroscience, 2016, 17, 30.	1.9	45
51	Human single neuron activity precedes emergence of conscious perception. Nature Communications, 2018, 9, 2057.	12.8	45
52	Specific responses of human hippocampal neurons are associated with better memory. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10503-10508.	7.1	44
53	Safety of focused ultrasound neuromodulation in humans with temporal lobe epilepsy. Brain Stimulation, 2021, 14, 1022-1031.	1.6	41
54	Coding of Information in the Phase of Local Field Potentials within Human Medial Temporal Lobe. Neuron, 2013, 79, 594-606.	8.1	40

#	Article	IF	CITATIONS
55	Anesthesia-induced loss of consciousness disrupts auditory responses beyond primary cortex. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 11770-11780.	7.1	40
56	Percepts to recollections: insights from single neuron recordings in the human brain. Trends in Cognitive Sciences, 2012, 16, 427-436.	7.8	38
57	Single-Cell Responses to Face Adaptation in the Human Medial Temporal Lobe. Neuron, 2014, 84, 363-369.	8.1	37
58	Scene-selective coding by single neurons in the human parahippocampal cortex. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1153-1158.	7.1	37
59	Contrasting roles of neural firing rate and local field potentials in human memory. Hippocampus, 2007, 17, 606-617.	1.9	36
60	A method for the topographical identification and quantification of high frequency oscillations in in intracranial electroencephalography recordings. Clinical Neurophysiology, 2018, 129, 308-318.	1.5	33
61	Utilization of independent component analysis for accurate pathological ripple detection in intracranial EEG recordings recorded extra- and intra-operatively. Clinical Neurophysiology, 2018, 129, 296-307.	1.5	33
62	Safety, efficacy, and life satisfaction following epilepsy surgery in patients aged 60 years and older. Journal of Neurosurgery, 2016, 124, 945-951.	1.6	31
63	Cognitive-motor brain–machine interfaces. Journal of Physiology (Paris), 2014, 108, 38-44.	2.1	30
64	Repeating Spatial Activations in Human Entorhinal Cortex. Current Biology, 2015, 25, 1080-1085.	3.9	30
65	Ictal Depth EEG and MRI Structural Evidence for Two Different Epileptogenic Networks in Mesial Temporal Lobe Epilepsy. PLoS ONE, 2015, 10, e0123588.	2.5	29
66	Ethical commitments, principles, and practices guiding intracranial neuroscientific research in humans. Neuron, 2022, 110, 188-194.	8.1	29
67	Improved quality of life and cognition after early vagal nerve stimulator implantation in children. Epilepsy and Behavior, 2018, 88, 139-145.	1.7	25
68	Ripples Have Distinct Spectral Properties and Phase-Amplitude Coupling With Slow Waves, but Indistinct Unit Firing, in Human Epileptogenic Hippocampus. Frontiers in Neurology, 2020, 11, 174.	2.4	24
69	Stimulation of the right entorhinal white matter enhances visual memory encoding in humans. Brain Stimulation, 2021, 14, 131-140.	1.6	24
70	Reduced neural feedback signaling despite robust neuron and gamma auditory responses during human sleep. Nature Neuroscience, 2022, 25, 935-943.	14.8	24
71	High-resolution depth electrode localization and imaging in patients with pharmacologically intractable epilepsy. Journal of Neurosurgery, 2008, 108, 812-815.	1.6	21
72	Invariance of firing rate and field potential dynamics to stimulus modulation rate in human auditory cortex. Human Brain Mapping, 2011, 32, 1181-1193.	3.6	21

#	Article	IF	CITATIONS
73	Failed epilepsy surgery deserves a second chance. Clinical Neurology and Neurosurgery, 2017, 163, 110-115.	1.4	21
74	Cortex-based inter-subject analysis of iEEG and fMRI data sets: Application to sustained task-related BOLD and gamma responses. NeuroImage, 2013, 66, 457-468.	4.2	19
75	Decoding speech perception from single cell activity in humans. NeuroImage, 2015, 117, 151-159.	4.2	19
76	Preconscious Prediction of a Driver's Decision Using Intracranial Recordings. Journal of Cognitive Neuroscience, 2015, 27, 1492-1502.	2.3	17
77	Depth electrode neurofeedback with a virtual reality interface. Brain-Computer Interfaces, 2017, 4, 201-213.	1.8	17
78	Graph theoretical measures of fast ripples support the epileptic network hypothesis. Brain Communications, 2022, 4, .	3.3	16
79	Dual array EEG-fMRI: An approach for motion artifact suppression in EEG recorded simultaneously with fMRI. NeuroImage, 2016, 142, 674-686.	4.2	13
80	Conflict monitoring mechanism at the single-neuron level in the human ventral anterior cingulate cortex. NeuroImage, 2018, 175, 45-55.	4.2	13
81	Neurons as will and representation. Nature Reviews Neuroscience, 2022, 23, 104-114.	10.2	13
82	Degradation of Neuronal Encoding of Speech in the Subthalamic Nucleus in Parkinson's Disease. Neurosurgery, 2019, 84, 378-387.	1.1	12
83	Single-cell activity in human STG during perception of phonemes is organized according to manner of articulation. NeuroImage, 2021, 226, 117499.	4.2	12
84	Subthalamic Neurons Encode Both Single- and Multi-Limb Movements in Parkinson's Disease Patients. Scientific Reports, 2017, 7, 42467.	3.3	10
85	Highâ€frequency oscillations in human brain. Hippocampus, 1999, 9, 137-142.	1.9	10
86	Brain Stimulation in Alzheimer's Disease. Journal of Alzheimer's Disease, 2016, 54, 789-791.	2.6	9
87	Subgroup analysis of seizure and cognitive outcome after vagal nerve stimulator implantation in children. Child's Nervous System, 2021, 37, 243-252.	1.1	9
88	Brain stimulation and memory. Brain, 2015, 138, 1766-1767.	7.6	8
89	Spatial distribution and hemispheric asymmetry of electrically evoked experiential phenomena in the human brain. Journal of Neurosurgery, 2020, 133, 54-62.	1.6	8
90	Stimulating the inferior fronto-occipital fasciculus elicits complex visual hallucinations. Brain Stimulation, 2020, 13, 1577-1579.	1.6	6

#	Article	IF	CITATIONS
91	Distinct iEEG activity patterns in temporal-limbic and prefrontal sites induced by emotional intentionality. Cortex, 2014, 60, 121-138.	2.4	5
92	Conductive gel bridge sensor for motion tracking in simultaneous EEG-fMRI recordings. Epilepsy Research, 2019, 149, 117-122.	1.6	4
93	The role of mPFC and MTL neurons in humanÂchoice under goal-conflict. Nature Communications, 2020, 11, 3192.	12.8	4
94	Impaired Timing of Speech-Related Neurons in the Subthalamic Nucleus of Parkinson Disease Patients Suffering Speech Disorders. Neurosurgery, 2021, 89, 800-809.	1.1	3
95	Negative and positive volitional responses induced by stimulating the superior frontal gyrus: A case study. Brain Stimulation, 2019, 12, 1614-1616.	1.6	2
96	Laser ablation of human guilt. Brain Stimulation, 2022, 15, 164-166.	1.6	2
97	Highlights From AES2020, a Virtual American Epilepsy Society Experience. Epilepsy Currents, 2021, , 153575972110182.	0.8	1