
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5249162/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Producing bulk ultrafine-grained materials by severe plastic deformation. Jom, 2006, 58, 33-39.	0.9	1,350
2	Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14501-14505.	3.3	1,202
3	Deformation twinning in nanocrystalline materials. Progress in Materials Science, 2012, 57, 1-62.	16.0	1,065
4	Paradox of Strength and Ductility in Metals Processed Bysevere Plastic Deformation. Journal of Materials Research, 2002, 17, 5-8.	1.2	1,062
5	Extraordinary strain hardening by gradient structure. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7197-7201.	3.3	912
6	Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Materialia, 2004, 52, 4589-4599.	3.8	820
7	Heterogeneous materials: a new class of materials with unprecedented mechanical properties. Materials Research Letters, 2017, 5, 527-532.	4.1	818
8	Back stress strengthening and strain hardening in gradient structure. Materials Research Letters, 2016, 4, 145-151.	4.1	766
9	Simultaneously Increasing the Ductility and Strength of Nanostructured Alloys. Advanced Materials, 2006, 18, 2280-2283.	11.1	735
10	Perspective on hetero-deformation induced (HDI) hardening and back stress. Materials Research Letters, 2019, 7, 393-398.	4.1	638
11	Review on superior strength and enhanced ductility of metallic nanomaterials. Progress in Materials Science, 2018, 94, 462-540.	16.0	634
12	Nanostructural hierarchy increases the strength of aluminium alloys. Nature Communications, 2010, 1, 63.	5.8	552
13	Ultralong single-wall carbon nanotubes. Nature Materials, 2004, 3, 673-676.	13.3	513
14	Microstructures and dislocation configurations in nanostructured Cu processed by repetitive corrugation and straightening. Acta Materialia, 2001, 49, 1497-1505.	3.8	512
15	Mechanical properties of copper/bronze laminates: Role of interfaces. Acta Materialia, 2016, 116, 43-52.	3.8	507
16	Heterostructured materials: superior properties from hetero-zone interaction. Materials Research Letters, 2021, 9, 1-31.	4.1	505
17	Retaining ductility. Nature Materials, 2004, 3, 351-352.	13.3	484
18	Synergetic Strengthening by Gradient Structure. Materials Research Letters, 2014, 2, 185-191.	4.1	442

#	Article	IF	CITATIONS
19	Influence of ECAP routes on the microstructure and properties of pure Ti. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 299, 59-67.	2.6	424
20	Ultrastrong, Stiff, and Lightweight Carbonâ€Nanotube Fibers. Advanced Materials, 2007, 19, 4198-4201.	11.1	419
21	Deformation twinning in nanocrystalline copper at room temperature and low strain rate. Applied Physics Letters, 2004, 84, 592-594.	1.5	414
22	Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Materialia, 2007, 55, 5822-5832.	3.8	414
23	Deformation behavior and plastic instabilities of ultrafine-grained titanium. Applied Physics Letters, 2001, 79, 611-613.	1.5	413
24	Structural evolutions of metallic materials processed by severe plastic deformation. Materials Science and Engineering Reports, 2018, 133, 1-59.	14.8	401
25	Structureâ€Dependent Electrical Properties of Carbon Nanotube Fibers. Advanced Materials, 2007, 19, 3358-3363.	11.1	393
26	Deformation mechanism in nanocrystalline Al: Partial dislocation slip. Applied Physics Letters, 2003, 83, 632-634.	1.5	382
27	Continuous processing of ultrafine grained Al by ECAP–Conform. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 382, 30-34.	2.6	376
28	Strong Carbon-Nanotube Fibers Spun from Long Carbon-Nanotube Arrays. Small, 2007, 3, 244-248.	5.2	370
29	Simultaneously Increasing the Ductility and Strength of Ultra-Fine-Grained Pure Copper. Advanced Materials, 2006, 18, 2949-2953.	11.1	359
30	Interface affected zone for optimal strength and ductility in heterogeneous laminate. Materials Today, 2018, 21, 713-719.	8.3	357
31	Observations and issues on mechanisms of grain refinement during ECAP process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 291, 46-53.	2.6	353
32	Producing Bulk Ultrafine-Grained Materials by Severe Plastic Deformation: Ten Years Later. Jom, 2016, 68, 1216-1226.	0.9	346
33	Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 343, 43-50.	2.6	336
34	Sustained Growth of Ultralong Carbon Nanotube Arrays for Fiber Spinning. Advanced Materials, 2006, 18, 3160-3163.	11.1	332
35	Dislocation–twin interactions in nanocrystalline fcc metals. Acta Materialia, 2011, 59, 812-821.	3.8	327
36	Deformation twins in nanocrystalline Al. Applied Physics Letters, 2003, 83, 5062-5064.	1.5	323

#	Article	IF	CITATIONS
37	Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nature Nanotechnology, 2009, 4, 738-741.	15.6	321
38	High Tensile Ductility and Strength in Bulk Nanostructured Nickel. Advanced Materials, 2008, 20, 3028-3033.	11.1	316
39	Microstructural evolution, microhardness and thermal stability of HPT-processed Cu. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 290, 128-138.	2.6	309
40	Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Applied Physics Letters, 2006, 89, 121906.	1.5	295
41	Performance and applications of nanostructured materials produced by severe plastic deformation. Scripta Materialia, 2004, 51, 825-830.	2.6	284
42	Fundamentals of Superior Properties in Bulk NanoSPD Materials. Materials Research Letters, 2016, 4, 1-21.	4.1	280
43	Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 303, 82-89.	2.6	277
44	Polymerâ€Embedded Carbon Nanotube Ribbons for Stretchable Conductors. Advanced Materials, 2010, 22, 3027-3031.	11.1	277
45	Combining gradient structure and TRIP effect to produce austenite stainless steel with high strength and ductility. Acta Materialia, 2016, 112, 337-346.	3.8	265
46	Influence of stacking-fault energy on microstructural characteristics of ultrafine-grain copper and copper–zinc alloys. Acta Materialia, 2008, 56, 809-820.	3.8	251
47	Microstructure of cryogenic treated M2 tool steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2003, 339, 241-244.	2.6	250
48	Influence of specimen dimensions on the tensile behavior of ultrafine-grained Cu. Scripta Materialia, 2008, 59, 627-630.	2.6	241
49	Temperature-mediated growth of single-walled carbon-nanotube intramolecular junctions. Nature Materials, 2007, 6, 283-286.	13.3	238
50	Microstructural evolution during recovery and recrystallization of a nanocrystalline Al-Mg alloy prepared by cryogenic ball milling. Acta Materialia, 2003, 51, 2777-2791.	3.8	227
51	Nanostructures in Ti processed by severe plastic deformation. Journal of Materials Research, 2003, 18, 1908-1917.	1.2	225
52	Superhard B–C–N materials synthesized in nanostructured bulks. Journal of Materials Research, 2002, 17, 3139-3145.	1.2	222
53	Wavy Ribbons of Carbon Nanotubes for Stretchable Conductors. Advanced Functional Materials, 2012, 22, 1279-1283.	7.8	221
54	A two step SPD processing of ultrafine-grained titanium. Scripta Materialia, 1999, 11, 947-954.	0.5	204

#	Article	IF	CITATIONS
55	Nucleation and growth of deformation twins in nanocrystalline aluminum. Applied Physics Letters, 2004, 85, 5049-5051.	1.5	202
56	Carbon nanotube yarn strain sensors. Nanotechnology, 2010, 21, 305502.	1.3	201
57	Simultaneously enhancing strength and ductility of a high-entropy alloy via gradient hierarchical microstructures. International Journal of Plasticity, 2019, 123, 178-195.	4.1	201
58	Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Composites Part B: Engineering, 2014, 56, 408-412.	5.9	200
59	Influence of specimen dimensions and strain measurement methods on tensile stress–strain curves. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 525, 68-77.	2.6	198
60	Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys. Materials Today, 2020, 41, 62-71.	8.3	197
61	Strain hardening and ductility in a coarse-grain/nanostructure laminate material. Scripta Materialia, 2015, 103, 57-60.	2.6	195
62	Inverse Grain-Size Effect on Twinning in Nanocrystalline Ni. Physical Review Letters, 2008, 101, 025503.	2.9	190
63	Formation mechanism of wide stacking faults in nanocrystalline Al. Applied Physics Letters, 2004, 84, 3564-3566.	1.5	183
64	Influence of stacking fault energy on nanostructure formation under high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 188-193.	2.6	179
65	A novel approach to fabricate high volume fraction nanocomposites with long aligned carbon nanotubes. Composites Science and Technology, 2010, 70, 1980-1985.	3.8	179
66	The fundamentals of nanostructured materials processed by severe plastic deformation. Jom, 2004, 56, 58-63.	0.9	176
67	Superior strength and ductility of 316L stainless steel with heterogeneous lamella structure. Journal of Materials Science, 2018, 53, 10442-10456.	1.7	175
68	Strong Strain Hardening in Nanocrystalline Nickel. Physical Review Letters, 2009, 103, 205504.	2.9	174
69	Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion. Journal of Applied Physics, 2004, 96, 636-640.	1.1	169
70	Effect of carbon nanotube length on thermal, electrical and mechanical properties of CNT/bismaleimide composites. Carbon, 2013, 53, 145-152.	5.4	166
71	New Deformation Twinning Mechanism Generates Zero Macroscopic Strain in Nanocrystalline Metals. Physical Review Letters, 2008, 100, 095701.	2.9	163
72	Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Materialia, 2009, 57, 3763-3770.	3.8	163

#	Article	IF	CITATIONS
73	Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density. Applied Physics Letters, 2008, 92, .	1.5	158
74	Determining the optimal stacking fault energy for achieving high ductility in ultrafine-grained Cu–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 493, 123-129.	2.6	157
75	Strategies for Improving Tensile Ductility of Bulk Nanostructured Materials. Advanced Engineering Materials, 2010, 12, 769-778.	1.6	156
76	A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13699-13702.	3.3	153
77	Ultrastrong, Foldable, and Highly Conductive Carbon Nanotube Film. ACS Nano, 2012, 6, 5457-5464.	7.3	153
78	Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics, 2013, 33, 81-86.	1.8	153
79	Critical microstructures and defects in heterostructured materials and their effects on mechanical properties. Acta Materialia, 2020, 189, 129-144.	3.8	150
80	Role of stacking fault energy in strengthening due to cryo-deformation of FCC metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 7624-7630.	2.6	147
81	Effect of heterostructure and hetero-deformation induced hardening on the strength and ductility of brass. Acta Materialia, 2020, 186, 644-655.	3.8	146
82	Evolution of defect structures during cold rolling of ultrafine-grained Cu and Cu–Zn alloys: Influence of stacking fault energy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 474, 342-347.	2.6	144
83	Tough Nanostructured Metals at Cryogenic Temperatures. Advanced Materials, 2004, 16, 328-331.	11.1	142
84	Development of repetitive corrugation and straightening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 35-39.	2.6	141
85	The role of stacking faults and twin boundaries in grain refinement of a Cu–Zn alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4959-4966.	2.6	141
86	Extra strengthening in a coarse/ultrafine grained laminate: Role of gradient interfaces. International Journal of Plasticity, 2019, 123, 196-207.	4.1	139
87	Hot isostatic pressing of powder in tube MgB2 wires. Applied Physics Letters, 2003, 82, 2847-2849.	1.5	137
88	Amorphization of TiNi induced by high-pressure torsion. Philosophical Magazine Letters, 2004, 84, 183-190.	0.5	137
89	Effect of lattice strain and defects on the superconductivity of MgB2. Applied Physics Letters, 2001, 79, 4399-4401.	1.5	136
90	The effect of dislocation density on the interactions between dislocations and twin boundaries in nanocrystalline materials. Acta Materialia, 2012, 60, 3181-3189.	3.8	134

ΥUNTIAN **Τ** ZHU

#	Article	IF	CITATIONS
91	Influence of stacking fault energy on deformation mechanism and dislocation storage capacity in ultrafine-grained materials. Scripta Materialia, 2009, 60, 52-55.	2.6	133
92	Twinning and stacking fault formation during tensile deformation of nanocrystalline Ni. Scripta Materialia, 2006, 54, 1685-1690.	2.6	130
93	Basal-plane stacking-fault energies of Mg: A first-principles study of Li- and Al-alloying effects. Scripta Materialia, 2011, 64, 693-696.	2.6	130
94	Ultrastrong, Stiff and Multifunctional Carbon Nanotube Composites. Materials Research Letters, 2013, 1, 19-25.	4.1	130
95	Dry-sliding tribological properties of ultrafine-grained Ti prepared by severe plastic deformation. Acta Materialia, 2005, 53, 5167-5173.	3.8	128
96	Influence of gradient structure volume fraction on the mechanical properties of pure copper. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 280-285.	2.6	128
97	Grain size effect on tensile properties and slip systems of pure magnesium. Acta Materialia, 2021, 206, 116604.	3.8	127
98	Carbon Nanotube Yarn Electrodes for Enhanced Detection of Neurotransmitter Dynamics in Live Brain Tissue. ACS Nano, 2013, 7, 7864-7873.	7.3	125
99	Strain rate dependence of properties of cryomilled bimodal 5083 Al alloys. Acta Materialia, 2006, 54, 3015-3024.	3.8	124
100	Processing nanocrystalline Ti and its nanocomposites from micrometer-sized Ti powder using high pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 282, 78-85.	2.6	123
101	Ductility and plasticity of nanostructured metals: differences and issues. Materials Today Nano, 2018, 2, 15-20.	2.3	122
102	Mechanical and electrical property improvement in CNT/Nylon composites through drawing and stretching. Composites Science and Technology, 2011, 71, 1677-1683.	3.8	121
103	Formation mechanism of fivefold deformation twins in nanocrystalline face-centered-cubic metals. Applied Physics Letters, 2005, 86, 103112.	1.5	120
104	Influence of stacking fault energy on the minimum grain size achieved in severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 463, 22-26.	2.6	119
105	The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test. Carbon, 2012, 50, 1271-1279.	5.4	119
106	A new route to bulk nanostructured metals. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 1559-1562.	1.1	118
107	Deformation twinning in a nanocrystalline hcp Mg alloy. Scripta Materialia, 2011, 64, 213-216.	2.6	116
108	Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl) Tj ETQq0 0 0 r	gBT_/Qverl	ock 10 Tf 50 6

#	Article	IF	CITATIONS
109	Self-Organization of Carbon Nanotubes in Evaporating Droplets. Journal of Physical Chemistry B, 2006, 110, 13926-13930.	1.2	113
110	Hetero-deformation induced (HDI) hardening does not increase linearly with strain gradient. Scripta Materialia, 2020, 174, 19-23.	2.6	111
111	Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 386-389.	2.6	110
112	Ductility and strain hardening in gradient and lamellar structured materials. Scripta Materialia, 2020, 186, 321-325.	2.6	110
113	Influence of grain size on deformation mechanisms: An extension to nanocrystalline materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 409, 234-242.	2.6	106
114	Gradient Structured Copper by Rotationally Accelerated Shot Peening. Journal of Materials Science and Technology, 2017, 33, 758-761.	5.6	105
115	An Ideal Ultrafine-Grained Structure for High Strength and High Ductility. Materials Research Letters, 2015, 3, 88-94.	4.1	100
116	<i>In-situ</i> observation of dislocation dynamics near heterostructured interfaces. Materials Research Letters, 2019, 7, 376-382.	4.1	100
117	Three-dimensional shear-strain patterns induced by high-pressure torsion and their impact on hardness evolution. Acta Materialia, 2011, 59, 3903-3914.	3.8	98
118	In-situ atomic-scale observation of irradiation-induced void formation. Nature Communications, 2013, 4, 2288.	5.8	98
119	Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment. Materials and Design, 2016, 105, 89-95.	3.3	97
120	Tailoring the Morphology of Carbon Nanotube Arrays: From Spinnable Forests to Undulating Foams. ACS Nano, 2009, 3, 2157-2162.	7.3	96
121	Effect of Ag on interfacial segregation in Mg–Gd–Y–(Ag)–Zr alloy. Acta Materialia, 2015, 95, 20-29.	3.8	95
122	Reduction of friction coefficient of ultrafine-grained CP titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 371, 313-317.	2.6	94
123	Quantifying the synergetic strengthening in gradient material. Scripta Materialia, 2018, 150, 22-25.	2.6	94
124	Ductility by shear band delocalization in the nano-layer of gradient structure. Materials Research Letters, 2019, 7, 12-17.	4.1	94
125	Grain growth and dislocation density evolution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Scripta Materialia, 2011, 64, 327-330.	2.6	93
126	Tuning the compressive mechanical properties of carbon nanotube foam. Carbon, 2011, 49, 2834-2841.	5.4	93

#	Article	IF	CITATIONS
127	Consolidation of nanometer sized powders using severe plastic torsional straining. Scripta Materialia, 1998, 10, 45-54.	0.5	91
128	Concurrent microstructural evolution of ferrite and austenite in a duplex stainless steel processed by high-pressure torsion. Acta Materialia, 2014, 63, 16-29.	3.8	90
129	Synergetic strengthening far beyond rule of mixtures in gradient structured aluminum rod. Scripta Materialia, 2016, 122, 106-109.	2.6	89
130	Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy. International Journal of Plasticity, 2021, 139, 102965.	4.1	88
131	Mechanism of grain growth during severe plastic deformation of a nanocrystalline Ni–Fe alloy. Applied Physics Letters, 2009, 94, .	1.5	87
132	Optimizing the strength, ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 746, 211-216.	2.6	87
133	Length-dependent thermal conductivity of an individual single-wall carbon nanotube. Applied Physics Letters, 2007, 91, 123119.	1.5	86
134	Processing and characterization of nanostructured Cu-carbon nanotube composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 523, 60-64.	2.6	86
135	Vertically Aligned Pearl-like Carbon Nanotube Arrays for Fiber Spinning. Journal of the American Chemical Society, 2008, 130, 1130-1131.	6.6	84
136	Processing of nanostructured metals and alloys via plastic deformation. MRS Bulletin, 2010, 35, 977-981.	1.7	82
137	Morphology, structure and composition of precipitates in Al0.3CoCrCu0.5FeNi high-entropy alloy. Intermetallics, 2013, 32, 329-336.	1.8	82
138	Origins and dissociation of pyramidal <câ+âa> dislocations in magnesium and its alloys. Acta Materialia, 2018, 146, 265-272.</câ+âa>	3.8	82
139	Deformation twins in pure titanium processed by equal channel angular pressing. Scripta Materialia, 2003, 48, 813-817.	2.6	80
140	Partial-dislocation-mediated processes in nanocrystalline Ni with nonequilibrium grain boundaries. Applied Physics Letters, 2006, 89, 031922.	1.5	78
141	Grain Size Effect on Deformation Mechanisms of Nanocrystalline bcc Metals. Materials Research Letters, 2013, 1, 26-31.	4.1	78
142	Dense dispersed shear bands in gradient-structured Ni. International Journal of Plasticity, 2020, 124, 186-198.	4.1	77
143	Negative Strain-rate Sensitivity in a Nanostructured Aluminum Alloy. Advanced Engineering Materials, 2006, 8, 945-947.	1.6	76
144	Raman Spectroscopy and Imaging of Ultralong Carbon Nanotubes. Journal of Physical Chemistry B, 2005, 109, 3751-3758.	1.2	75

#	Article	IF	CITATIONS
145	Effect of stacking fault energy on strength and ductility of nanostructured alloys: An evaluation with minimum solution hardening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 525, 83-86.	2.6	75
146	Grain size and reversible beta-to-omega phase transformation in a Ti alloy. Scripta Materialia, 2010, 63, 613-616.	2.6	75
147	Ultrastrong low-carbon nanosteel produced by heterostructure and interstitial mediated warm rolling. Science Advances, 2020, 6, .	4.7	75
148	Residual stress provides significant strengthening and ductility in gradient structured materials. Materials Research Letters, 2019, 7, 433-438.	4.1	74
149	The formation mechanism of a novel interfacial phase with high thermal stability in a Mg-Gd-Y-Ag-Zr alloy. Acta Materialia, 2019, 162, 214-225.	3.8	74
150	The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon, 2011, 49, 1752-1757.	5.4	73
151	A multiscale architectured CuCrZr alloy with high strength, electrical conductivity and thermal stability. Journal of Alloys and Compounds, 2018, 735, 1389-1394.	2.8	73
152	Composite Carbon Nanotube/Silica Fibers with Improved Mechanical Strengths and Electrical Conductivities. Small, 2008, 4, 1964-1967.	5.2	72
153	Raman Spectral Imaging of a Carbon Nanotube Intramolecular Junction. Physical Review Letters, 2005, 94, 016802.	2.9	71
154	Extraordinary Bauschinger effect in gradient structured copper. Scripta Materialia, 2018, 150, 57-60.	2.6	69
155	Nanostructuring of TiNi Alloy by SPD Processing for Advanced Properties. Materials Transactions, 2008, 49, 97-101.	0.4	68
156	Remarkably enhanced thermal transport based on a flexible horizontally-aligned carbon nanotube array film. Scientific Reports, 2016, 6, 21014.	1.6	68
157	Heterostructure induced dispersive shear bands in heterostructured Cu. Scripta Materialia, 2019, 170, 76-80.	2.6	68
158	Formation mechanisms of nanostructures in stainless steel during high-strain-rate severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 252-256.	2.6	66
159	Effect of processing conditions on the properties of high molecular weight conductive polyaniline fiber. , 2000, 38, 194-204.		65
160	Strong and ductile nanostructured Cu-carbon nanotube composite. Applied Physics Letters, 2009, 95, 071907.	1.5	65
161	Optimizing the strength and ductility of AZ91 Mg alloy by ECAP and subsequent aging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 588, 329-334.	2.6	65
162	Heterostructured stainless steel: Properties, current trends, and future perspectives. Materials Science and Engineering Reports, 2022, 150, 100691.	14.8	65

#	Article	IF	CITATIONS
163	Carbonâ€Nanotube Cotton for Largeâ€Scale Fibers. Advanced Materials, 2007, 19, 2567-2570.	11.1	64
164	Effect of grain size on the competition between twinning and detwinning in nanocrystalline metals. Physical Review B, 2011, 84, .	1.1	62
165	Microstructure evolution and strengthening mechanisms of pure titanium with nano-structured surface obtained by high energy shot peening. Vacuum, 2016, 125, 215-221.	1.6	62
166	Predictions for partial-dislocation-mediated processes in nanocrystalline Ni by generalized planar fault energy curves: An experimental evaluation. Applied Physics Letters, 2006, 88, 121905.	1.5	61
167	Twin stability in highly nanotwinned Cu under compression, torsion and tension. Scripta Materialia, 2012, 66, 872-877.	2.6	61
168	Dryâ€Processable Carbon Nanotubes for Functional Devices and Composites. Small, 2014, 10, 4606-4625.	5.2	61
169	Enhanced strength and ductility of AZ80 Mg alloys by spray forming and ECAP. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 670, 280-291.	2.6	61
170	Gradient and lamellar heterostructures for superior mechanical properties. MRS Bulletin, 2021, 46, 244-249.	1.7	61
171	The role of shear strain on texture and microstructural gradients in low carbon steel processed by Surface Mechanical Attrition Treatment. Scripta Materialia, 2015, 108, 100-103.	2.6	60
172	Grain size effect on radiation tolerance of nanocrystalline Mo. Scripta Materialia, 2016, 123, 90-94.	2.6	60
173	Enhanced mechanical properties in ultrafine grained 7075 Al alloy. Journal of Materials Research, 2005, 20, 288-291.	1.2	59
174	Grain boundary formation by remnant dislocations from the de-twinning of thin nano-twins. Scripta Materialia, 2015, 100, 98-101.	2.6	58
175	Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion. Acta Materialia, 2016, 109, 300-313.	3.8	58
176	Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 153-156.	2.6	57
177	Strong and Conductive Dry Carbon Nanotube Films by Microcombing. Small, 2015, 11, 3830-3836.	5.2	56
178	Grain refining and mechanical properties of AZ31 alloy processed by accumulated extrusion bonding. Journal of Alloys and Compounds, 2018, 745, 599-608.	2.8	56
179	Superior mechanical properties of ZK60 mg alloy processed by equal channel angular pressing and rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 630, 45-50.	2.6	55
180	Thermal Oxidation Kinetics of MoSi ₂ â€Based Powders. Journal of the American Ceramic Society, 1999, 82, 2785-2790.	1.9	54

#	Article	IF	CITATIONS
181	Effect of strain rate on the ductility of a nanostructured aluminum alloy. Scripta Materialia, 2006, 54, 1175-1180.	2.6	54
182	Length-dependent thermal conductivity of single-wall carbon nanotubes: prediction and measurements. Nanotechnology, 2007, 18, 475714.	1.3	54
183	Microstructure and thermal stability of nanocrystalline Mg-Gd-Y-Zr alloy processed by high pressure torsion. Journal of Alloys and Compounds, 2017, 721, 577-585.	2.8	54
184	Evolution of twinning systems and variants during sequential twinning in cryo-rolled titanium. International Journal of Plasticity, 2019, 112, 52-67.	4.1	54
185	Commercialization of Nanostructured Metals Produced by Severe Plastic Deformation Processing. Advanced Engineering Materials, 2003, 5, 373-378.	1.6	52
186	Architecturing materials at mesoscale: some current trends. Materials Research Letters, 2021, 9, 399-421.	4.1	51
187	Mechanical properties of bone-shaped-short-fiber reinforced composites. Acta Materialia, 1999, 47, 1767-1781.	3.8	49
188	Mechanical and electrical properties of aligned carbon nanotube/carbon matrix composites. Carbon, 2014, 75, 307-313.	5.4	49
189	Ni Nanobuffer Layer Provides Light-Weight CNT/Cu Fibers with Superior Robustness, Conductivity, and Ampacity. ACS Applied Materials & Interfaces, 2018, 10, 8197-8204.	4.0	48
190	On the influence of fiber shape in bone-shaped short-fiber composites. Composites Science and Technology, 2001, 61, 1341-1357.	3.8	47
191	Alloying Mg with Gd and Y: Increasing both plasticity and strength. Computational Materials Science, 2016, 115, 85-91.	1.4	46
192	Effect of Severe Plastic Deformation on the Behavior of Ti–Ni Shape Memory Alloys. Materials Transactions, 2006, 47, 694-697.	0.4	45
193	High-pressure torsion induced microstructural evolution in a hexagonal close-packed Zr alloy. Scripta Materialia, 2010, 62, 214-217.	2.6	45
194	Strain hardening and softening in a nanocrystalline Ni–Fe alloy induced by severe plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3398-3403.	2.6	45
195	Ultralight anisotropic foams from layered aligned carbon nanotube sheets. Nanoscale, 2015, 7, 17038-17047.	2.8	45
196	Bone-shaped short fiber composites—an overview. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 326, 208-227.	2.6	44
197	Fabrication of Al/Mg/Al Composites via Accumulative Roll Bonding and Their Mechanical Properties. Materials, 2016, 9, 951.	1.3	44
198	Effect of charge redistribution factor on stacking-fault energies of Mg-based binary alloys. Scripta Materialia, 2016, 112, 101-105.	2.6	44

#	Article	IF	CITATIONS
199	Grain refinement and mechanical properties of pure aluminum processed by accumulative extrusion bonding. Transactions of Nonferrous Metals Society of China, 2019, 29, 437-447.	1.7	44
200	Unique defect evolution during the plastic deformation of a metal matrix composite. Scripta Materialia, 2019, 162, 316-320.	2.6	44
201	Stiff, strong and ductile heterostructured aluminum composites reinforced with oriented nanoplatelets. Scripta Materialia, 2020, 189, 140-144.	2.6	44
202	Introduction to Heterostructured Materials: A Fast Emerging Field. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 4715-4726.	1.1	44
203	Self-thickening, cross-slip deformation twinning model. Applied Physics Letters, 2008, 92, .	1.5	43
204	Dislocation density evolution during high pressure torsion of a nanocrystalline Ni–Fe alloy. Applied Physics Letters, 2009, 94, .	1.5	43
205	Characterization of Carbon Nanotube Fiber Compressive Properties Using Tensile Recoil Measurement. ACS Nano, 2012, 6, 4288-4297.	7.3	43
206	Solute segregation assisted nanocrystallization of a cold-rolled Mg–Ag alloy during annealing. Scripta Materialia, 2020, 177, 69-73.	2.6	43
207	Parametric study of carbon nanotube growth via cobalt-catalyzed ethanol decomposition. Materials Letters, 2006, 60, 1968-1972.	1.3	40
208	Influence of grain size on the density of deformation twins in Cu–30%Zn alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3942-3948.	2.6	39
209	Effect of texture on deformation behavior of heterogeneous Mg-13Gd alloy with strength–ductility synergy. Journal of Materials Science and Technology, 2022, 113, 271-286.	5.6	39
210	De-twinning via secondary twinning in face-centered cubic alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 110-114.	2.6	38
211	A new metastable precipitate phase in Mg–Gd–Y–Zr alloy. Philosophical Magazine, 2014, 94, 2403-2409.	0.7	38
212	Atomic segregation at twin boundaries in a Mg-Ag alloy. Scripta Materialia, 2020, 178, 193-197.	2.6	38
213	Achieving high hetero-deformation induced (HDI) strengthening and hardening in brass by dual heterostructures. Journal of Materials Science and Technology, 2022, 98, 244-247.	5.6	38
214	Structural annealing of carbon coated aligned multi-walled carbon nanotube sheets. Carbon, 2014, 79, 113-122.	5.4	37
215	Mechanical milling-induced deformation twinning in Fcc materials with high stacking fault energy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 707-712.	1.1	36
216	Kinetics of Thermal, Passive Oxidation of Nicalon Fibers. Journal of the American Ceramic Society, 1998, 81, 655-660.	1.9	36

#	Article	IF	CITATIONS
217	Partial-mediated slips in nanocrystalline Ni at high strain rate. Applied Physics Letters, 2007, 90, 221911.	1.5	36
218	Nanostructured materials by mechanical alloying: new results on property enhancement. Journal of Materials Science, 2010, 45, 4725-4732.	1.7	36
219	High-temperature grain size stabilization of nanocrystalline Fe–Cr alloys with Hf additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 613, 289-295.	2.6	36
220	Improved corrosion resistance of 316LN stainless steel performed by rotationally accelerated shot peening. Applied Surface Science, 2019, 481, 1305-1312.	3.1	36
221	Tracing plastic deformation path and concurrent grain refinement during additive friction stir deposition. Materialia, 2021, 18, 101159.	1.3	36
222	Carbon Nanotube Composite Films with Switchable Transparency. ACS Applied Materials & Interfaces, 2011, 3, 658-661.	4.0	35
223	Twinning via the motion of incoherent twin boundaries nucleated at grain boundaries in a nanocrystalline Cu alloy. Scripta Materialia, 2014, 72-73, 35-38.	2.6	35
224	Size effect of primary Y2O3 additions on the characteristics of the nanostructured ferritic ODS alloys: Comparing as-milled and as-milled/annealed alloys using S/TEM. Journal of Nuclear Materials, 2014, 452, 223-229.	1.3	34
225	Atomic-Scale Structural Investigations on the Nucleation of Cubic Boron Nitride from Amorphous Boron Nitride under High Pressures and Temperatures. Chemistry of Materials, 2002, 14, 1873-1878.	3.2	33
226	Nano ZrO2 particles in nanocrystalline Fe–14Cr–1.5Zr alloy powders. Journal of Nuclear Materials, 2014, 452, 434-439.	1.3	33
227	Effect of equal-channel angular pressing and aging on corrosion behavior of ZK60 Mg alloy. Transactions of Nonferrous Metals Society of China, 2015, 25, 3909-3920.	1.7	33
228	Formation of solute nanostructures in an Al–Zn–Mg alloy during long-term natural aging. Journal of Alloys and Compounds, 2020, 821, 153572.	2.8	33
229	Effect of dislocation configuration on Ag segregation in subgrain boundary of a Mg-Ag alloy. Scripta Materialia, 2021, 191, 219-224.	2.6	33
230	Strengthening and toughening effects by strapping carbon nanotube cross-links with polymer molecules. Composites Science and Technology, 2016, 135, 123-127.	3.8	32
231	Bauschinger Effect and Back Stress in Gradient Cu-Ge Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3943-3950.	1.1	32
232	Dual-phase hetero-structured strategy to improve ductility of a low carbon martensitic steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 834, 142584.	2.6	32
233	Macroscopic Twinning Strain in Nanocrystalline Cu. Materials Research Letters, 2014, 2, 63-69.	4.1	31
234	Gradient structure produces superior dynamic shear properties. Materials Research Letters, 2017, 5, 501-507.	4.1	31

#	Article	IF	CITATIONS
235	Tuning heterostructures with powder metallurgy for high synergistic strengthening and hetero-deformation induced hardening. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 777, 139074.	2.6	31
236	Deformation twin formed by self-thickening, cross-slip mechanism in nanocrystalline Ni. Applied Physics Letters, 2008, 93, .	1.5	30
237	Poly(vinyl alcohol) reinforced with large-diameter carbon nanotubes via spray winding. Composites Part A: Applied Science and Manufacturing, 2012, 43, 587-592.	3.8	30
238	Influence of microstructure on thermal stability of ultrafine-grained Cu processed by equal channel angular pressing. Journal of Materials Science, 2018, 53, 13173-13185.	1.7	30
239	Plastic accommodation during tensile deformation of gradient structure. Science China Materials, 2021, 64, 1534-1544.	3.5	30
240	Microstructural Features and Mechanical Properties of the Ti-6Al-4V ELI Alloy Processed by Severe Plastic Deformation. Materials Science Forum, 2006, 503-504, 757-762.	0.3	29
241	Highly aligned carbon nanotube forests coated by superconducting NbC. Nature Communications, 2011, 2, 428.	5.8	29
242	Deformation-induced ω phase in nanocrystalline Mo. Scripta Materialia, 2013, 68, 130-133.	2.6	29
243	Analysis of Size Dependence of Ceramic Fiber and Whisker Strength. Journal of the American Ceramic Society, 1997, 80, 1447-1452.	1.9	28
244	Dislocations with edge components in nanocrystalline bcc Mo. Journal of Materials Research, 2013, 28, 1820-1826.	1.2	28
245	Radial growth of multi-walled carbon nanotubes in aligned sheets through cyclic carbon deposition and graphitization. Carbon, 2017, 111, 411-418.	5.4	28
246	A comparison of the twisted and untwisted structures for one-dimensional carbon nanotube assemblies. Materials and Design, 2018, 146, 20-27.	3.3	28
247	Improving mechanical properties of heterogeneous Mg-Gd alloy laminate via accumulated extrusion bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139324.	2.6	28
248	Microstructural evolution and mechanical properties of a 5052 Al alloy with gradient structures. Journal of Materials Research, 2017, 32, 4443-4451.	1.2	27
249	Hardening after annealing in nanostructured 316L stainless steel. Nano Materials Science, 2020, 2, 80-82.	3.9	27
250	Role of oxygen in Ln2â^'xCexCuO4 superconductors. Physica C: Superconductivity and Its Applications, 1994, 224, 256-262.	0.6	26
251	A New Route for the Synthesis of Tungsten Carbide-Cobalt Nanocomposites. Journal of the American Ceramic Society, 1994, 77, 2777-2778.	1.9	26
252	A Composite Reinforced with Bone-Shaped Short Fibers. Scripta Materialia, 1998, 38, 1321-1325.	2.6	26

#	Article	IF	CITATIONS
253	Drying induced upright sliding and reorganization of carbon nanotube arrays. Nanotechnology, 2006, 17, 4533-4536.	1.3	26
254	Microstructure and Properties of Ti Rods Produced by Multi-Step SPD. Materials Science Forum, 2006, 503-504, 763-768.	0.3	26
255	Nanolayered Carbon/Silica Superstructures via Organosilane Assembly. Advanced Materials, 2008, 20, 1199-1204.	11.1	26
256	Strong and Ductile Colossal Carbon Tubes with Walls of Rectangular Macropores. Physical Review Letters, 2008, 101, 145501.	2.9	26
257	Stress relaxation in carbon nanotube-based fibers for load-bearing applications. Carbon, 2013, 52, 347-355.	5.4	26
258	Stabilizing carbon nanotube yarns using chemical vapor infiltration. Composites Science and Technology, 2014, 90, 82-87.	3.8	26
259	Stacking-fault energy effect on zero-strain deformation twinning in nanocrystalline Cu–Zn alloys. Scripta Materialia, 2015, 109, 89-93.	2.6	26
260	Localized deformation via multiple twinning in a Mg–Gd–Y–Zr alloy processed by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 677, 68-75.	2.6	26
261	Mechanical behavior, deformation mechanism and microstructure evolutions of ultrafine-grained Al during recovery via annealing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138706.	2.6	26
262	Severe Plastic Deformation of Melt-Spun Shape Memory Ti ₂ NiCu and Ni ₂ MnGa Alloys. Materials Transactions, 2006, 47, 546-549.	0.4	25
263	Effect of Equal Channel Angular Pressing and Repeated Rolling on Structure, Phase Transformations and Properties of TiNi Shape Memory Alloys. Materials Science Forum, 2006, 503-504, 539-544.	0.3	25
264	Grain refinement and growth induced by severe plastic deformation. International Journal of Materials Research, 2009, 100, 1632-1637.	0.1	25
265	Twin intersection mechanisms in nanocrystalline fcc metals. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 585, 292-296.	2.6	25
266	Achieving Gradient Martensite Structure and Enhanced Mechanical Properties in a Metastable β Titanium Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2126-2138.	1.1	25
267	Hetero-deformation induced strengthening and toughening of pure iron with inverse and multi-gradient structures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 782, 139256.	2.6	25
268	Activating dispersed strain bands in tensioned nanostructure layer for high ductility: The effects of microstructure inhomogeneity. International Journal of Plasticity, 2022, 149, 103159.	4.1	25
269	Mechanical Properties and Deformation Mechanisms of Heterostructured High-Entropy and Medium-Entropy Alloys: A Review. Frontiers in Materials, 2022, 8, .	1.2	25
270	Templated Growth of Hexagonal Nickel Carbide Nanocrystals on Vertically Aligned Carbon Nanotubes. Journal of Physical Chemistry C, 2010, 114, 10424-10429.	1.5	24

#	Article	IF	CITATIONS
271	Anneal hardening of a nanostructured Cu–Al alloy processed by high-pressure torsion and rolling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 207-215.	2.6	24
272	Influence of processing parameters on the formation of WC-Co nanocomposite powder using a polymer as carbon source. Composites Part B: Engineering, 1996, 27, 407-413.	5.9	23
273	Advances in the Synthesis and Characterization of Boron Nitride. Defect and Diffusion Forum, 2000, 186-187, 1-32.	0.4	23
274	Mechanical behavior of nanostructured materials symposium honoring Carl Koch. Jom, 2007, 59, 49-49.	0.9	23
275	Applied stress controls the production of nano-twins in coarse-grained metals. Applied Physics Letters, 2012, 101, 231903.	1.5	23
276	Influence of scandium addition on the high-temperature grain size stabilization of oxide-dispersion-strengthened (ODS) ferritic alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 636, 565-571.	2.6	23
277	Atomic-scale homogenization in an fcc-based high-entropy alloy via severe plastic deformation. Journal of Alloys and Compounds, 2016, 686, 15-23.	2.8	23
278	Effect of strain rate on the mechanical properties of a gum metal with various microstructures. Acta Materialia, 2017, 132, 193-208.	3.8	23
279	Microstructure Evolution and Mechanical Properties of Al-TiB2/TiC In Situ Aluminum-Based Composites during Accumulative Roll Bonding (ARB) Process. Materials, 2017, 10, 109.	1.3	23
280	Key roles of particles in grain refinement and material strengthening for an aluminum matrix composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 801, 140414.	2.6	23
281	Microstructures and Properties of Ultrafine-Grained Pure Titanium Processed by Equal-Channel Angular Pressing and Cold Deformation. Journal of Nanoscience and Nanotechnology, 2001, 1, 237-242.	0.9	22
282	Nucleation and growth mechanism of Ag precipitates in a CuAgZr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 85-90.	2.6	22
283	Alloying effect on grain-size dependent deformation twinning in nanocrystalline Cu–Zn alloys. Philosophical Magazine, 2015, 95, 301-310.	0.7	22
284	Microcombing enables high-performance carbon nanotube composites. Composites Science and Technology, 2016, 123, 92-98.	3.8	22
285	Fracture toughness of a composite reinforced with bone-shaped short fibers. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 317, 93-100.	2.6	21
286	High ductility of ultrafine-grained steel via phase transformation. Journal of Materials Research, 2008, 23, 1578-1586.	1.2	21
287	Effect of nano-oxide particle size on radiation resistance of iron–chromium alloys. Journal of Nuclear Materials, 2016, 469, 72-81.	1.3	21
288	Microstructural softening induced adiabatic shear banding in Ti-23Nb-0.7Ta-2Zr-O gum metal. Journal of Materials Science and Technology, 2020, 54, 31-39.	5.6	21

#	Article	IF	CITATIONS
289	Structure and phase characteristics of amorphous boron–carbon–nitrogen under high pressure and high temperature. Journal of Materials Research, 2001, 16, 1178-1184.	1.2	20
290	Microstructures and Stabilization Mechanisms of Nanocrystalline Iron-Chromium Alloys with Hafnium Addition. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 4394-4404.	1.1	20
291	Contribution of van der Waals forces to the plasticity of magnesium. Acta Materialia, 2016, 107, 127-132.	3.8	20
292	On the Heterogeneity of Local Shear Strain Induced by Highâ€Pressure Torsion. Advanced Engineering Materials, 2020, 22, 1900477.	1.6	20
293	Application of, and precautions for the use of, the Rule of additivity in phase transformation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2000, 31, 675-682.	1.0	19
294	Coating Alumina on Catalytic Iron Oxide Nanoparticles for Synthesizing Vertically Aligned Carbon Nanotube Arrays. ACS Applied Materials & Interfaces, 2011, 3, 4180-4184.	4.0	19
295	Formation of twins in polycrystalline cobalt during dynamic plastic deformation. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 548, 1-5.	2.6	19
296	Soldering carbon nanotube fibers by targeted electrothermal-induced carbon deposition. Carbon, 2017, 121, 242-247.	5.4	19
297	High hardness in a nanocrystalline Mg97Y2Zn1 alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7494-7499.	2.6	18
298	Strengthening at nanoscaled coherent twin boundary in f.c.c. metals. Philosophical Magazine, 2014, 94, 1249-1262.	0.7	18
299	Shear band stability and uniform elongation of gradient structured material: Role of lateral constraint. Extreme Mechanics Letters, 2020, 37, 100686.	2.0	18
300	A Statistical Theory of Composite Materials Strength. Journal of Composite Materials, 1989, 23, 280-287.	1.2	17
301	Effect of strain rate on mechanical properties of Cu/Ni multilayered composites processed by electrodeposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 726, 154-159.	2.6	17
302	A double-layered carbon nanotube array with super-hydrophobicity. Carbon, 2009, 47, 3332-3336.	5.4	16
303	Grain size effect on twin density in as-deposited nanocrystalline Cu film. Philosophical Magazine, 2013, 93, 4355-4363.	0.7	16
304	Recent Findings in Superior Strength and Ductility of Ultrafine-Grained Materials. Transactions of the Materials Research Society of Japan, 2015, 40, 309-318.	0.2	16
305	On the origin and behavior of irradiation-induced c-component dislocation loops in magnesium. Acta Materialia, 2017, 131, 457-466.	3.8	16
306	Effect of grain structure on Charpy impact behavior of copper. Scientific Reports, 2017, 7, 44783.	1.6	16

#	Article	IF	CITATIONS
307	The Evolution of Strain Gradient and Anisotropy in Gradient-Structured Metal. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 3951-3960.	1.1	16
308	Predicting the formation of <c + a> dislocations in magnesium alloys from multiple stacking fault energies. Materialia, 2019, 7, 100352.</c + a>	1.3	16
309	Effect of global constraint on the mechanical behavior of gradient materials. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 826, 141963.	2.6	16
310	Mechanical response of the constrained nanostructured layer in heterogeneous laminate. Scripta Materialia, 2022, 207, 114310.	2.6	16
311	Kinetics and Products of Molybdenum Disilicide Powder Oxidation. Journal of the American Ceramic Society, 2002, 85, 507-509.	1.9	15
312	Deformation Twinning in Nanocrystalline Metals. Journal of Materials Engineering and Performance, 2005, 14, 467-472.	1.2	15
313	Characterization of the Microstructure of Severely Deformed Titanium by X-Ray Diffraction Profile Analysis. Materials Science Forum, 2003, 414-415, 229-234.	0.3	14
314	Ductility of ultrafine-grained copper processed by equal-channel angular pressing. International Journal of Materials Research, 2009, 100, 1647-1652.	0.1	14
315	Strain softening in nanocrystalline Ni–Fe alloy induced by large HPT revolutions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 4807-4811.	2.6	14
316	Mechanical Properties and Microstructures of Commercialâ€Purity Aluminum Processed by Rotational Accelerated Shot Peening Plus Cold Rolling. Advanced Engineering Materials, 2020, 22, 1900478.	1.6	14
317	Strain hardening behavior and microstructure evolution of gradient-structured Cu-Al alloys with low stack fault energy. Journal of Materials Research and Technology, 2022, 19, 220-229.	2.6	14
318	A Thermogravimetric Study of the Influence of Internal Stresses on Oxygen Variations in Ln2-xCexCuO4. Journal of Solid State Chemistry, 1995, 114, 491-498.	1.4	13
319	Co–Mo catalyzed growth of multi-wall carbon nanotubes from CO decomposition. Carbon, 2003, 41, 2635-2641.	5.4	13
320	Microstructure and tensile behaviour of pure titanium produced after high-energy shot peening. Materials Science and Technology, 2016, 32, 1323-1329.	0.8	13
321	A novel approach to align carbon nanotubes via water-assisted shear stretching. Composites Science and Technology, 2018, 164, 1-7.	3.8	13
322	Improving the high-temperature ductility of Al composites by tailoring the nanoparticle network. Materialia, 2020, 9, 100523.	1.3	13
323	Nanostructured materials: From laboratory to commercialization. Jom, 2006, 58, 27-27.	0.9	12
324	Investigation of microcombing parameters in enhancing the properties of carbon nanotube yarns. Materials and Design, 2017, 134, 181-187.	3.3	12

#	Article	IF	CITATIONS
325	A silicon-impregnated carbon nanotube mat as a lithium-ion cell anode. Journal of Applied Electrochemistry, 2018, 48, 127-133.	1.5	12
326	Enhanced irradiation and corrosion resistance of 316LN stainless steel with high densities of dislocations and twins. Journal of Nuclear Materials, 2019, 517, 234-240.	1.3	12
327	SYNTHESIS AND CHARACTERIZATION OF THE NEW COMPOUND EuBa4Cu3O8.5+δ. Journal of Physics and Chemistry of Solids, 1998, 59, 1331-1336.	1.9	11
328	Formation of metastable states in nanostructured Al- and Ti-based alloys by the SPTS technique. Scripta Materialia, 1999, 12, 923-926.	0.5	11
329	Aligned carbon nanotubes sandwiched in epitaxial NbC film for enhanced superconductivity. Nanoscale, 2012, 4, 2268.	2.8	11
330	Tuning exchange bias in epitaxial Ni/MgO/TiN heterostructures integrated on Si(1 0 0). Current Opinion in Solid State and Materials Science, 2014, 18, 263-268.	5.6	11
331	Grain size effect on deformation twin thickness in a nanocrystalline metal with low stacking-fault energy. Journal of Materials Research, 2019, 34, 2398-2405.	1.2	11
332	Layer-by-layer corrosion behavior of 316LN stainless steel with a gradient-nanostructured surface. Electrochemistry Communications, 2020, 110, 106642.	2.3	11
333	Unexpected high-temperature brittleness of a Mg-Gd-Y-Ag alloy. Journal of Magnesium and Alloys, 2022, 10, 2510-2515.	5.5	11
334	On the absence of superconductivity in Gd2â^'xCexCuO4. Physica C: Superconductivity and Its Applications, 1994, 226, 165-169.	0.6	10
335	Variation of oxygen content and crystal chemistry of YBa4Cu3O8.5+δ. Physica C: Superconductivity and Its Applications, 1998, 298, 29-36.	0.6	10
336	Martensitic transformation in CrCoNi medium-entropy alloy at cryogenic temperature. Applied Physics Letters, 2021, 119, .	1.5	10
337	Unveiling microstructural origins of the balanced strength–ductility combination in eutectic high-entropy alloys at cryogenic temperatures. Materials Research Letters, 2022, 10, 602-610.	4.1	10
338	On the Application of the Statistical Strength Model of Fiber-Reinforced Composites. Journal of Composite Materials, 1993, 27, 944-959.	1.2	9
339	Deformation state effects on the Jc of BSCCO tapes. Physica C: Superconductivity and Its Applications, 1996, 260, 33-40.	0.6	9
340	High-pressure torsion of copper samples containing columns of highly aligned nanotwins. Scripta Materialia, 2011, 65, 899-902.	2.6	9
341	Ultraviolet light irradiation on pitting corrosion of Cu-based bulk metallic glasses. Journal of Alloys and Compounds, 2016, 661, 345-348.	2.8	9
342	Effective Surface Nano-Crystallization of Ni2FeCoMo0.5V0.2 Medium Entropy Alloy by Rotationally Accelerated Shot Peening (RASP). Entropy, 2020, 22, 1074.	1.1	9

#	Article	IF	CITATIONS
343	Length-dependent carbon nanotube film structures and mechanical properties. Nanotechnology, 2021, 32, 265702.	1.3	9
344	Inter-zone constraint modifies the stress-strain response of the constituent layer in gradient structure. Science China Materials, 2021, 64, 3114-3123.	3.5	9
345	Elemental redistribution in a nanocrystalline Ni–Fe alloy induced by high-pressure torsion. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7500-7505.	2.6	8
346	Long-term stability of 14YT–4Sc alloy at high temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 647, 222-228.	2.6	7
347	A model for ã€^c+a〉 dislocation transmission across nano-spaced parallel basal stacking faults in a HCP alloy. Philosophical Magazine Letters, 2015, 95, 58-66.	0.5	7
348	Alloying effects on the plasticity of magnesium: comprehensive analysis of influences of all five slip systems. Journal of Physics Condensed Matter, 2020, 32, 015401.	0.7	7
349	Influence of annealing parameters on the mechanical properties of heterogeneous lamella structured 5083 aluminum alloy. Letters on Materials, 2019, 9, 556-560.	0.2	7
350	Crystal structure and chemistry of four new RBa4Cu3O8.5+δ (R=Ho, Er, Tm and Yb) compounds. Journal of Alloys and Compounds, 1998, 281, 137-145.	2.8	6
351	The influence of structural defects on intra-granular critical currents of bulk MgB/sub 2/. IEEE Transactions on Applied Superconductivity, 2003, 13, 3068-3071.	1.1	6
352	Fabrication of epitaxial Cu3Ge on sapphire with controlled crystallinity and planar defects. Journal of Alloys and Compounds, 2015, 641, 238-243.	2.8	6
353	Alleviating surface tensile stress in e-beam treated tool steels by cryogenic treatment. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 722, 167-172.	2.6	6
354	Twin thickness and dislocation interactions affect the incoherent-twin boundary phase in face-centered cubic metals. Cell Reports Physical Science, 2022, 3, 100736.	2.8	6
355	Heterostructure alleviates LÃ1⁄4ders deformation of ultrafine-grained stainless steels. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 848, 143393.	2.6	6
356	High critical currents in powder in tube MgB/sub 2/wires: influence of microstructure and heat treatments. IEEE Transactions on Applied Superconductivity, 2003, 13, 3347-3350.	1.1	5
357	Deformation Twins Formed in Nanocrystalline Materials. Materials Science Forum, 2006, 503-504, 125-132.	0.3	5
358	Twinning in cryomilled nanocrystalline Mg powder. Philosophical Magazine Letters, 2013, 93, 457-464.	0.5	5
359	Influence of Strain Rate on Mechanical Behaviours of Gradient-Structured Copper. Materials Transactions, 2020, 61, 708-717.	0.4	5
360	Effect of Equal Channel Angular Pressing and Repeated Rolling on Structure, Phase Transformations and Properties of TiNi Shape Memory Alloys. Materials Science Forum, 0, , 539-544.	0.3	5

2

#	Article	IF	CITATIONS
361	Nucleation of deformation twins in nanocrystalline fcc alloys. Philosophical Magazine, 2016, 96, 3790-3802.	0.7	4
362	Investigation and modification of carbon buckypaper as an electrocatalyst support for oxygen reduction. Journal of Applied Electrochemistry, 2017, 47, 105-115.	1.5	4
363	Significance of surface layer integrity for sustaining the ductility of gradient-structured nickel. Materials Letters, 2021, 303, 130491.	1.3	4
364	On the Statistical Strength of Nicalon Fibers and its Characterization. Ceramic Engineering and Science Proceedings, 0, , 119-126.	0.1	4
365	Preface to the Special Issue on Ultrafine Grained Materials. Journal of Materials Science, 2010, 45, 4543-4544.	1.7	3
366	An intermetallic Fe–Zr catalyst used for growing long carbon nanotube arrays. Materials Letters, 2010, 64, 1947-1950.	1.3	3
367	Preface to the special issue on ultrafine-grained materials. Journal of Materials Science, 2014, 49, 6485-6486.	1.7	3
368	Catch twin nucleation in action at atomic scale. Science China Materials, 2018, 61, 1019-1020.	3.5	3
369	Microstructure and Mechanical Properties of Long, Ultrafine-Grained Ti Rods. , 2006, , 235-240.		3
370	Improving the Mechanical Properties of Ti-6Al-4V Alloy by Equal Channel Angular Pressing. , 2006, , 241-246.		3
371	Differential Thermal Analysis of Solid Zirconium. Journal of Testing and Evaluation, 1995, 23, 431-435.	0.4	3
372	Rietveld refinement of crystal chemistry of RBa4Cu3O8.5+δ (R=rare earth). Journal of Physics and Chemistry of Solids, 2002, 63, 23-29.	1.9	2
373	Structures and Mechanical Properties of ECAP Processed 7075 Al Alloy upon Natural Aging and T651 Treatment. Materials Research Society Symposia Proceedings, 2004, 821, 343.	0.1	2
374	Contribution of early works by Terence G. Langdon to modern materials science. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2005, 410-411, 5-7.	2.6	2
375	Deformation Mechanisms of Nanocrystalline Materials. Materials Science Forum, 2007, 539-543, 270-277.	0.3	2
376	Grain Size Effect on Deformation Twinning and De-Twinning in a Nanocrystalline Ni-Fe Alloy. Materials Science Forum, 2010, 667-669, 181-186.	0.3	2
377	Preface to the special issue on ultrafine-grained materials. Journal of Materials Science, 2012, 47, 7717-7718.	1.7	2

Aligned Carbon Nanotube Composite Prepregs. , 2014, , 649-670.

#	Article	IF	CITATIONS
379	Probabilistic Strength of Carbon Nanotube Yarns. Solid Mechanics and Its Applications, 2009, , 211-222.	0.1	2
380	On the Nonuniform Distributions of Temperature and Thermal Stress in DTA Testing. Journal of Testing and Evaluation, 1995, 23, 63-66.	0.4	2
381	Impurity elements study of carbon nanotubes fabricated by chemical vapor deposition. Nuclear Instruments & Methods in Physics Research B, 2007, 261, 574-577.	0.6	1
382	Multifunctional Nanoprepregs Based on Aligned Carbon Nanotube Sheets. Materials Research Society Symposia Proceedings, 2012, 1407, 32.	0.1	1
383	Effect of triple junctions on deformation twinning in a nanostructured Cu–Zn alloy: A statistical study using transmission Kikuchi diffraction. Beilstein Journal of Nanotechnology, 2016, 7, 1501-1506.	1.5	1
384	Formation of Pile Networks by Long Carbon Nanotubes from Decomposition of CO on Co-Mo Film. Journal of Nanoscience and Nanotechnology, 2004, 4, 189-191.	0.9	1
385	A new micromechanical model of CNT-metal nanocomposites with random clustered distribution of CNTs. Frattura Ed Integrita Strutturale, 2015, 9, 471-484.	0.5	1
386	Unconfined Twist: a Simple Method to Prepare Ultrafine Grained Metallic Materials. Materials Research Society Symposia Proceedings, 2004, 821, 234.	0.1	0
387	Oxidation Kinetics of Hexagonalâ€Shaped Singleâ€Crystal Silicon Whiskers. Journal of the American Ceramic Society, 1999, 82, 2791-2795.	1.9	Ο
388	Effects of Eu interfacial mobility on the growth of epitaxial EuBa2Cu3O7â^î^films. Applied Physics Letters, 2005, 86, 101912.	1.5	0
389	Deformation Twinning in Nanocrystalline fcc Copper and Aluminum. , 2006, , 3-11.		Ο
390	A new perspective on hierarchical structure to analyse strength limiting factors of CNT yarns. International Journal of Sustainable Materials and Structural Systems, 2016, 2, 308.	0.2	0
391	Deformation Twinning in Nanocrystalline Metals. , 2016, , .		Ο
392	High-Performance Composites Produced from Dry-Processable Multi-Walled Carbon Nanotubes. , 2017, , 3-27.		0
393	Deformation Twinning in Nanocrystalline Metals. , 2022, , 412-431.		0
394	Multiscale Processes in Surface Deformation. , 2007, , 31-1-31-16.		0