
Gabriela RodrÃ-guez-Manzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5248711/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Reversal of sexual exhaustion by serotonergic and noradrenergic agents. Behavioural Brain Research, 1994, 62, 127-134.	2.2	110
2	Male Sexual Behavior. , 2009, , 5-66.		90
3	The spinal pattern generator for ejaculation. Brain Research Reviews, 2008, 58, 106-120.	9.0	80
4	Evidence for the involvement of a spinal pattern generator in the control of the genital motor pattern of ejaculation. Brain Research, 2003, 975, 222-228.	2.2	65
5	Opioid antagonists and the sexual satiation phenomenon. Psychopharmacology, 1995, 122, 131-136.	3.1	63
6	Participation of the central noradrenergic system in the reestablishment of copulatory behavior of sexually exhausted rats by yohimbine, naloxone, and 8-OH-DPAT. Brain Research Bulletin, 1995, 38, 399-404.	3.0	62
7	Aphrodisiac properties of Montanoa tomentosa aqueous crude extract in male rats. Pharmacology Biochemistry and Behavior, 2004, 78, 129-134.	2.9	61
8	Stimulation of the medial preoptic area facilitates sexual behavior but does not reverse sexual satiation Behavioral Neuroscience, 2000, 114, 553-560.	1.2	55
9	Anxiolytic-Like Effect of Ejaculation Under Various Sexual Behavior Conditions in the Male Rat. Physiology and Behavior, 1999, 67, 651-657.	2.1	50
10	Sexual behavior reduces hypothalamic androgen receptor immunoreactivity. Psychoneuroendocrinology, 2003, 28, 501-512.	2.7	46
11	Yohimbine interacts with the dopaminergic system to reverse sexual satiation: further evidence for a role of sexual motivation in sexual exhaustion. European Journal of Pharmacology, 1999, 372, 1-8.	3.5	45
12	Evidence for changes in brain enkephalin contents associated to male rat sexual activity. Behavioural Brain Research, 2002, 131, 47-55.	2.2	37
13	Sensory and motor aspects of the coital reflex in the spinal male rat. Behavioural Brain Research, 2000, 108, 97-103.	2.2	36
14	Further evidence showing that the inhibitory action of serotonin on rat masculine sexual behavior is mediated after the stimulation of 5-HT1B receptors. Pharmacology Biochemistry and Behavior, 1992, 42, 529-533.	2.9	34
15	Yohimbine reverses the exhaustion of the coital reflex in spinal male rats. Behavioural Brain Research, 2003, 141, 43-50.	2.2	34
16	Effect of progesterone upon adenylate cyclase activity and cAMP levels on brain areas. Pharmacology Biochemistry and Behavior, 1985, 23, 501-504.	2.9	33
17	Pharmacological and physiological aspects of sexual exhaustion in male rats. Scandinavian Journal of Psychology, 2003, 44, 257-263.	1.5	33
18	8-OH-DPAT and Male Rat Sexual Behavior: Partial Blockade by Noradrenergic Lesion and Sexual Exhaustion. Pharmacology Biochemistry and Behavior, 1997, 56, 111-116.	2.9	30

#	Article	IF	CITATIONS
19	Blockade of the establishment of the sexual inhibition resulting from sexual exhaustion by the Coolidge effect. Behavioural Brain Research, 1999, 100, 245-254.	2.2	30
20	Participation of 5-HT1B receptors in the inhibitory actions of serotonin on masculine sexual behaviour of mice: pharmacological analysis in 5-HT1B receptor knockout mice. British Journal of Pharmacology, 2002, 136, 1127-1134.	5.4	28
21	Unraveling the modulatory actions of serotonin on male rat sexual responses. Neuroscience and Biobehavioral Reviews, 2015, 55, 234-246.	6.1	27
22	Relationship between Sexual Satiety and Brain Androgen Receptors. Neuroendocrinology, 2007, 85, 16-26.	2.5	26
23	Effect of guanine derivatives on lordosis behavior in estrogen primed rats. Physiology and Behavior, 1983, 31, 589-92.	2.1	25
24	Recovery from sexual exhaustion-induced copulatory inhibition and drug hypersensitivity follow a same time course: Two expressions of a same process?. Behavioural Brain Research, 2011, 217, 253-260.	2.2	24
25	Role of genital sensory information in the control of the functioning of the spinal generator for ejaculation. International Journal of Impotence Research, 2005, 17, 114-120.	1.8	23
26	TLR4 Receptor Induces 2-AG–Dependent Tolerance to Lipopolysaccharide and Trafficking of CB2 Receptor in Mast Cells. Journal of Immunology, 2019, 202, 2360-2371.	0.8	23
27	Electrical stimulation of dorsal and ventral striatum differentially alters the copulatory behavior of male rats Behavioral Neuroscience, 2010, 124, 686-694.	1.2	22
28	Low anandamide doses facilitate male rat sexual behaviour through the activation of CB1 receptors. Psychopharmacology, 2014, 231, 4071-4080.	3.1	22
29	Evidence for the presence and functioning of the spinal generator for ejaculation in the neonatal male rat. International Journal of Impotence Research, 2005, 17, 270-276.	1.8	21
30	Participation of Endogenous Opioids in the Inhibition of the Spinal Generator for Ejaculation in Rats. Journal of Sexual Medicine, 2009, 6, 3045-3055.	0.6	21
31	α-Adrenergic agents modulate the activity of the spinal pattern generator for ejaculation. International Journal of Impotence Research, 2006, 18, 32-38.	1.8	20
32	Anandamide Transforms Noncopulating Rats into Sexually Active Animals. Journal of Sexual Medicine, 2013, 10, 686-693.	0.6	20
33	Induction of female sexual behavior by GTP in ovariectomized estrogen primed rats. Physiology and Behavior, 1982, 28, 1073-1076.	2.1	19
34	Facilitation of lordosis behavior in ovariectomized estrogen-primed rats by medial preoptic implantation of 51², 31², pregnanolone: A ring A reduced progesterone metabolite. Physiology and Behavior, 1986, 36, 277-281.	2.1	19
35	Male Sexual Behavior. , 2017, , 1-57.		19
36	Biphasic effects of anandamide on behavioural responses. Behavioural Pharmacology, 2015, 26, 607-615.	1.7	18

#	Article	IF	CITATIONS
37	Electrical stimulation of the ventral tegmental area exerts opposite effects on male rat sexual behaviour expression depending on the stimulated sub region. Behavioural Brain Research, 2007, 179, 310-313.	2.2	16
38	Endocannabinoids Interact With the Dopaminergic System to Increase Sexual Motivation: Lessons From the Sexual Satiety Phenomenon. Frontiers in Behavioral Neuroscience, 2019, 13, 184.	2.0	16
39	Gender differences in the cardiovascular responses to morphine and naloxone in spinal rats. European Journal of Pharmacology, 2000, 397, 121-128.	3.5	15
40	Ejaculation induces long-lasting behavioural changes in male rats in the forced swimming test: evidence for an increased sensitivity to the antidepressant desipramine. Brain Research Bulletin, 2005, 65, 323-329.	3.0	15
41	Exhaustion of the coital reflex in spinal male rats is reversed by the serotonergic agonist 8-OH-DPAT. Behavioural Brain Research, 2001, 118, 161-168.	2.2	14
42	Dopamine receptors play distinct roles in sexual behavior expression of rats with a different sexual motivational tone. Behavioural Pharmacology, 2014, 25, 684-694.	1.7	14
43	Anandamide Reduces the Ejaculatory Threshold of Sexually Sluggish Male Rats: Possible Relevance for Human Lifelong Delayed Ejaculation Disorder. Journal of Sexual Medicine, 2015, 12, 1128-1135.	0.6	14
44	Nucleus accumbens dopamine increases sexual motivation in sexually satiated male rats. Psychopharmacology, 2019, 236, 1303-1312.	3.1	14
45	Fluoxetine Chronic Treatment Inhibits Male Rat Sexual Behavior by Affecting Both Copulatory Behavior and the Genital Motor Pattern of Ejaculation. Journal of Sexual Medicine, 2012, 9, 1015-1026.	0.6	13
46	A new role for GABAergic transmission in the control of male rat sexual behavior expression. Behavioural Brain Research, 2017, 320, 21-29.	2.2	13
47	Different amounts of ejaculatory activity, a natural rewarding behavior, induce differential mu and delta opioid receptor internalization in the rat's ventral tegmental area. Brain Research, 2013, 1541, 22-32.	2.2	12
48	Intra-VTA anandamide infusion produces dose-based biphasic effects on male rat sexual behavior expression. Pharmacology Biochemistry and Behavior, 2016, 150-151, 182-189.	2.9	12
49	Sexual interaction is essential for the transformation of non-copulating rats into sexually active animals by the endocannabinoid anandamide. Behavioural Brain Research, 2019, 359, 418-427.	2.2	12
50	Role of nociceptin/orphanin FQ and the pseudopeptide [Phe1Î [.] (CH2NH)Gly2]-nociceptin(1–13)-NH2 and their interaction with classic opioids in the modulation of thermonociception in the land snail Helix aspersa. European Journal of Pharmacology, 2008, 581, 77-85.	3.5	11
51	The mesolimbic system participates in the naltrexone-induced reversal of sexual exhaustion: Opposite effects of intra-VTA naltrexone administration on copulation of sexually experienced and sexually exhausted male rats. Behavioural Brain Research, 2013, 256, 64-71.	2.2	11
52	Endogenous opioids mediate the sexual inhibition but not the drug hypersensitivity induced by sexual satiation in male rats Behavioral Neuroscience, 2013, 127, 458-464.	1.2	11
53	Glutamatergic transmission is involved in the long lasting sexual inhibition of sexually exhausted male rats. Pharmacology Biochemistry and Behavior, 2015, 131, 64-70.	2.9	11
54	Stimulation of the medical preoptic area facilitates sexual behavior but does not reverse sexual satiation. Behavioral Neuroscience, 2000, 114, 553-60.	1.2	11

#	Article	IF	CITATIONS
55	Evidence for the presence of the spinal pattern generator involved in the control of the genital ejaculatory pattern in the female rat. Brain Research, 2006, 1084, 54-60.	2.2	8
56	A Role for Learning and Memory in the Expression of an Innate Behavior. , 2014, , 135-147.		8
57	Self-injury behaviour induced by intraplantar carrageenan infiltration: a model of tonic nociception. Brain Research Protocols, 2004, 13, 37-44.	1.6	7
58	Rhythmic motor patterns accompanying ejaculation in spinal cord-transected male rats. International Journal of Impotence Research, 2014, 26, 191-195.	1.8	7
59	Ejaculatory training lengthens the ejaculation latency and facilitates the functioning of the spinal generator for ejaculation of rats with rapid ejaculation. International Journal of Impotence Research, 2017, 29, 35-42.	1.8	7
60	Endocannabinoids mediate long-lasting behavioural and physiological changes in male rats induced by the repeated activation of the mesolimbic system by copulation to satiety. Behavioural Brain Research, 2020, 383, 112510.	2.2	7
61	Opioid receptor and β-arrestin2 densities and distribution change after sexual experience in the ventral tegmental area of male rats. Physiology and Behavior, 2018, 189, 107-115.	2.1	5
62	Sexual behaviour is impaired by the abused inhalant toluene in adolescent male rats. European Journal of Neuroscience, 2019, 50, 2113-2123.	2.6	5
63	DMI-induced sexual effects in male rats: Analysis of DMI's acute and chronic actions on copulatory behavior and on the genital motor pattern of ejaculation. Pharmacology Biochemistry and Behavior, 2010, 94, 423-430.	2.9	4
64	Mast cells and histamine are involved in the neuronal damage observed in a quinolinic acidâ€induced model of Huntington's disease. Journal of Neurochemistry, 2022, 160, 256-270.	3.9	4
65	Effects of bupropion on the ejaculatory response of male rats. International Journal of Impotence Research, 2014, 26, 205-212.	1.8	3
66	Endocannabinoids Released in the Ventral Tegmental Area During Copulation to Satiety Modulate Changes in Glutamate Receptors Associated With Synaptic Plasticity Processes. Frontiers in Synaptic Neuroscience, 2021, 13, 701290.	2.5	3
67	Male Sexual Behaviorâ [~] †. , 2017, , .		1
68	Stimulation of the medial preoptic area facilitates sexual behavior but does not reverse sexual satiation Behavioral Neuroscience, 2000, 114, 553-560.	1.2	1
69	Reversal of progesterone-induced sequential inhibition by progesterone metabolites. Journal of Physiology (Paris), 1997, 91, 57-62.	2.1	0