Carola Gallo-Rodriguez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5248064/publications.pdf

Version: 2024-02-01

37 papers 1,574 citations

331670 21 h-index 315739 38 g-index

41 all docs

41 docs citations

41 times ranked

1067 citing authors

#	Article	IF	CITATIONS
1	The Role of the Phosphorus Atom in Drug Design. ChemMedChem, 2019, 14, 190-216.	3.2	113
2	Synthesis of the hexasaccharide from Trypanosoma cruzi mucins with the Galp(1â€â†'â€2)Galf unit constructed with a superarmed thiogalactopyranosyl donor. Carbohydrate Research, 2019, 482, 107734.	2.3	2
3	Trypanosoma cruzi surface mucins are involved in the attachment to the Triatoma infestans rectal ampoule. PLoS Neglected Tropical Diseases, 2019, 13, e0007418.	3.0	20
4	Trypanosoma cruzi trans-sialidase. A tool for the synthesis of sialylated oligosaccharides. Carbohydrate Research, 2019, 479, 48-58.	2.3	7
5	Regioselective 5-O-Opening of Conformationally Locked 3,5-O-Di-tert-butylsilylene-d-galactofuranosides. Synthesis of (1→5)-β-d-Galactofuranosyl Derivatives. Journal of Organic Chemistry, 2016, 81, 9585-9594.	3.2	6
6	Synthesis of the O-linked hexasaccharide containing \hat{l}^2 -d-Galp-($1\hat{a}\dagger^2$)-d-Galf in Trypanosoma cruzi mucins. Differences on sialylation by trans-sialidase of the two constituent hexasaccharides. Bioorganic and Medicinal Chemistry, 2015, 23, 1213-1222.	3.0	12
7	Synthesis of \hat{l}_{\pm} - <scp>d</scp> -Glcp-(1â†'3)- \hat{l}_{\pm} - <scp>d</scp> -Galf-(1â†'2)- \hat{l}_{\pm} - <scp>l</scp> -Rhap constituent of the of Streptococcus pneumoniae 22F. Effect of 3-O-substitution in 1,2-cis \hat{l}_{\pm} - <scp>d</scp> -galactofuranosylation. RSC Advances, 2014, 4, 3368-3382.	CPS 3.6	8
8	Conformationally restricted 3,5-O-(di-tert-butylsilylene)-d-galactofuranosyl thioglycoside donor for 1,2-cis α-d-galactofuranosylation. Carbohydrate Research, 2014, 397, 7-17.	2.3	10
9	Synthesis of the O-linked hexasaccharide containing \hat{l}^2 -d-Galf- $(1\hat{a}^*2)$ - \hat{l}^2 -d-Galf in Trypanosoma cruzi mucins. Organic and Biomolecular Chemistry, 2012, 10, 6322.	2.8	20
10	Synthesis of arabinofuranose branched galactofuran tetrasaccharides, constituents of mycobacterial arabinogalactan. Organic and Biomolecular Chemistry, 2011, 9, 2085.	2.8	19
11	Glycosylation studies on conformationally restricted 3,5-O-(di-tert-butylsilylene)-d-galactofuranosyl trichloroacetimidate donors for 1,2-cis \hat{l} ±-d-galactofuranosylation. Carbohydrate Research, 2011, 346, 2838-48.	2.3	19
12	Influence of the solvent in low temperature glycosylations with O-(2,3,5,6-tetra-O-benzyl- \hat{l}^2 -d-galactofuranosyl) trichloroacetimidate for 1,2-cis \hat{l}_2 -d-galactofuranosylation. Carbohydrate Research, 2011, 346, 1495-1502.	2.3	15
13	Synthesis of trisaccharides containing internal galactofuranose O-linked in Trypanosoma cruzi mucins. Carbohydrate Research, 2010, 345, 385-396.	2.3	26
14	Synthesis of a tetrasaccharide fragment of mycobacterial arabinogalactan. Carbohydrate Research, 2008, 343, 1870-1875.	2.3	16
15	Comparative rates of sialylation by recombinant trans-sialidase and inhibitor properties of synthetic oligosaccharides from Trypanosoma cruzi mucins-containing galactofuranose and galactopyranose. Bioorganic and Medicinal Chemistry, 2007, 15, 2611-2616.	3.0	35
16	Facile synthesis of \hat{l}_{\pm} -D-Araf- $(1\hat{a}^{\dagger}\hat{s})$ -D-Galf, the linker unit of the arabinan to the galactan in Mycobacterium tuberculosis. Canadian Journal of Chemistry, 2006, 84, 486-491.	1.1	15
17	Synthesis of the O-linked pentasaccharide in glycoproteins of Trypanosoma cruzi and selective sialylation by recombinant trans-sialidase. Carbohydrate Research, 2006, 341, 1488-1497.	2.3	31
18	Synthesis of \hat{l}_{\pm} -d-Galf- $(1\hat{a}_{1}^{2})$ -d-galactitol and \hat{l}_{\pm} -d-Galf- $(1\hat{a}_{1}^{2})[\hat{l}_{-}$ -d-Galf- $(1\hat{a}_{1}^{2})]$ -d-galactitol, oligosaccharide derivatives from Bacteroides cellulosolvens glycoproteins. Carbohydrate Research, 2006, 341, 2487-2497.	2.3	28

#	Article	IF	CITATIONS
19	Hyaluronan oligosaccharides induce cell death through PI3-K/Akt pathway independently of NF-κB transcription factor. Glycobiology, 2006, 16, 359-367.	2.5	32
20	Selective sialylation of 2,3-di-O-(\hat{l}^2 -d-galactopyranosyl)-d-galactose catalyzed by Trypanosoma cruzi trans-sialidase. Tetrahedron: Asymmetry, 2005, 16, 541-551.	1.8	16
21	NATURALLY OCCURRING MONOSACCHARIDES: PROPERTIES AND SYNTHESIS. Advances in Carbohydrate Chemistry and Biochemistry, 2004, 59, 9-67.	0.9	27
22	Syntheses of Î ² -d-Galf-(1â†'6)-Î ² -d-Galf-(1â†'5)-d-Galfand Î ² -d-Galf-(1â†'5)-Î ² -d-Galf-(1â†'6)-d-Galf, Trisaccharide Unit Galactan of Mycobacterium tuberculosis. Journal of Organic Chemistry, 2003, 68, 6928-6934.	is in the	37
23	Synthesis of 2,3-di-O- $(\hat{l}^2$ -D-Galp)-D-Galp, a synthon for the mucin oligosaccharides of Trypanosoma cruzi. Arkivoc, 2003, 2003, 82-94.	0.5	8
24	Synthesis of α-d-Galp-(1â†'3)-β-d-Galf-(1â†'3)-d-Man, a Terminal Trisaccharide of Leishmania Type-2 Glycoinositolphospholipids. Journal of Organic Chemistry, 2002, 67, 4430-4435.	3.2	36
25	Synthesis of \hat{l}^2 -d-Galp- $(1\hat{a}^{\dagger}, \hat{a})$ - \hat{l}^2 -d-Galp- $(1\hat{a}^{\dagger}, \hat{b})$ - $[\hat{l}^2$ -d-Galf- $(1\hat{a}^{\dagger}, \hat{a})$]-d-GlcNAc, a tetrasaccharide component of mucin Trypanosoma cruzi. Tetrahedron, 2002, 58, 9373-9380.	s of 1.9	25
26	Separation of Galf $\hat{l}^21\hat{a}^2$ XGlcNAc and Galp $\hat{l}^21\hat{a}^2$ XGlcNAc (X = 3, 4, and 6) as the Alditols by High-pH Anion-Exchange Chromatography and Thin-Layer Chromatography: Characterization of Mucins from Trypanosoma cruzi. Analytical Biochemistry, 2000, 279, 79-84.	2.4	32
27	Acyclic Analogues of Deoxyadenosine 3â€~,5â€~-Bisphosphates as P2Y1 Receptor Antagonists. Journal of Medicinal Chemistry, 2000, 43, 746-755.	6.4	29
28	Synthesis of \hat{l}^2 -d-Galf-($1\hat{a}^3$)-d-GlcNAc by the Trichloroacetamidate Method and of \hat{l}^2 -d-Galf-($1\hat{a}^3$)-d-GlcNAc by SnCl4-Promoted Glycosylation. Organic Letters, 1999, 1, 245-248.	4.6	34
29	One-pot synthesis of β-d-Gal>(1 → 4)[β-d-Galp(1 → 6)]-d-GlcNAc, a â€~core' trisaccharide linked O-glycosidio in glycoproteins of Trypanosoma cruzi. Carbohydrate Research, 1997, 305, 163-170.	cally 2.3	40
30	First Synthesis of \hat{l}^2 -d-Galf($1\hat{a}^3$ 4)GlcNAc, a Structural Unit AttachedO-Glycosidically in Glycoproteins of Trypanosoma cruzi. Journal of Organic Chemistry, 1996, 61, 1886-1889.	3.2	46
31	Stimulation by Alkylxanthines of Chloride Efflux in CFPAC-1 Cells Does Not Involve A1 Adenosine Receptors. Biochemistry, 1995, 34, 9088-9094.	2.5	40
32	Structure-Activity Relationships of N6-Benzyladenosine-5'-uronamides as A3-Selective Adenosine Agonists. Journal of Medicinal Chemistry, 1994, 37, 636-646.	6.4	248
33	8-(3-Isothiocyanatostyryl)caffeine is a selective, irreversible inhibitor of striatal A2-Adenosine receptors. Drug Development Research, 1993, 29, 292-298.	2.9	8
34	8-(3-Chlorostyryl)caffeine (CSC) is a selective A2 -adenosine antagonist in vitro and in vivo. FEBS Letters, 1993, 323, 141-144.	2.8	158
35	A role for central A3-adenosine receptors. FEBS Letters, 1993, 336, 57-60.	2.8	145
36	Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. Journal of Medicinal Chemistry, 1993, 36, 1333-1342.	6.4	151

#	Article	lF	CITATIONS
37	Effect of trifluoromethyl and other substituents on activity of xanthines at adenosine receptors. Journal of Medicinal Chemistry, 1993, 36, 2639-2644.	6.4	50