Marco Brenna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/524754/publications.pdf Version: 2024-02-01

MARCO RRENNA

#	Article	IF	CITATIONS
1	Seismic crustal structure beneath Jeju Volcanic Island, South Korea from teleseismic <i>P</i> -receiver functions. Geophysical Journal International, 2021, 227, 58-75.	2.4	1
2	The magma source of small-scale intraplate monogenetic volcanic systems in northern New Zealand. Journal of Volcanology and Geothermal Research, 2021, 418, 107326.	2.1	6
3	Influence of host magma alkalinity on trachytic melts formed during incongruent orthopyroxene dissolution in mantle xenoliths. New Zealand Journal of Geology, and Geophysics, 2020, 63, 547-561.	1.8	5
4	Carbon–Strontium Isotope Decoupling in Carbonatites from Caotan (Qinling, China): Implications for the Origin of Calcite Carbonatite in Orogenic Settings. Journal of Petrology, 2020, 61, .	2.8	23
5	The Dunedin Volcanic Group and a revised model for Zealandia's alkaline intraplate volcanism. New Zealand Journal of Geology, and Geophysics, 2020, 63, 510-529.	1.8	24
6	Mineralogy, mineral chemistry and thermobarometry of post-mineralization dykes of the Sungun Cu–Mo porphyry deposit (Northwest Iran). Open Geosciences, 2020, 12, 764-790.	1.7	5
7	Crystallization kinetics of clinopyroxene and titanomagnetite growing from a trachybasaltic melt: New insights from isothermal time-series experiments. Chemical Geology, 2019, 510, 113-129.	3.3	43
8	Intra-eruptive trachyte-phonolite transition: Natural evidence and experimental constraints on the role of crystal mushes. American Mineralogist, 2019, 104, 1750-1764.	1.9	5
9	Genesis of the world's largest rare earth element deposit, Bayan Obo, China: Protracted mineralization evolution over â^1⁄41 b.y Geology, 2018, 46, 323-326.	4.4	82
10	Post-Mineralization, Cogenetic Magmatism at the Sungun Cu-Mo Porphyry Deposit (Northwest Iran): Protracted Melting and Extraction in an Arc System. Minerals (Basel, Switzerland), 2018, 8, 588.	2.0	11
11	Vesiculation and Quenching During Surtseyan Eruptions at Hunga Tongaâ€Hunga Ha'apai Volcano, Tonga. Journal of Geophysical Research: Solid Earth, 2018, 123, 3762-3779.	3.4	34
12	Olivine xenocryst diffusion reveals rapid monogenetic basaltic magma ascent following complex storage at Pupuke Maar, Auckland Volcanic Field, New Zealand. Earth and Planetary Science Letters, 2018, 499, 13-22.	4.4	41
13	Diffusion-zoned pyroxenes in an isotopically heterogeneous mantle lithosphere beneath the Dunedin Volcanic Group, New Zealand, and their implications for intraplate alkaline magma sources. Lithosphere, 2017, 9, 463-475.	1.4	30
14	Conceptual Development of a National Volcanic Hazard Model for New Zealand. Frontiers in Earth Science, 2017, 5, .	1.8	3
15	Peridotitic Lithosphere Metasomatized by Volatile-bearing Melts, and its Association with Intraplate Alkaline HIMU-like Magmatism. Journal of Petrology, 2016, 57, 2053-2078.	2.8	56
16	Mantle heterogeneity controls on small-volume basaltic volcanism: COMMENT. Geology, 2015, 43, e370-e370.	4.4	0
17	Co-located monogenetic eruptions ~200Âkyr apart driven by tapping vertically separated mantle source regions, Chagwido, Jeju Island, Republic of Korea. Bulletin of Volcanology, 2015, 77, 1.	3.0	23
18	Intraplate volcanism influenced by distal subduction tectonics at Jeju Island, Republic of Korea. Bulletin of Volcanology, 2015, 77, 1.	3.0	52

Marco Brenna

#	Article	IF	CITATIONS
19	A trachyte–syenite core within a basaltic nest: filtering of primitive injections by a multi-stage magma plumbing system (Oki-DÅzen, south-west Japan). Contributions To Mineralogy and Petrology, 2015, 170, 1.	3.1	19
20	Volcanic ash leachate compositions and assessment of health and agricultural hazards from 2012 hydrothermal eruptions, Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 286, 233-247.	2.1	35
21	Final Magma Storage Depth Modulation of Explosivity and Trachyte–Phonolite Genesis at an Intraplate Volcano: a Case Study from Ulleung Island, South Korea. Journal of Petrology, 2014, 55, 709-747.	2.8	41
22	Dynamics of surges generated by hydrothermal blasts during the 6 August 2012 Te Maari eruption, Mt. Tongariro, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 286, 348-366.	2.1	71
23	Dyke-diatreme transition in monogenetic volcanoes: insights from the Hillier Bay volcanic complex, Western Australia. Bulletin of Volcanology, 2014, 76, 1.	3.0	2
24	Perils in distinguishing phreatic from phreatomagmatic ash; insights into the eruption mechanisms of the 6 August 2012 Mt. Tongariro eruption, New Zealand. Journal of Volcanology and Geothermal Research, 2014, 286, 397-414.	2.1	71
25	How Small-volume Basaltic Magmatic Systems Develop: a Case Study from the Jeju Island Volcanic Field, Korea. Journal of Petrology, 2012, 53, 985-1018.	2.8	78
26	Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos, 2012, 148, 337-352.	1.4	70
27	The influence of magma plumbing complexity on monogenetic eruptions, Jeju Island, Korea. Terra Nova, 2011, 23, 70-75.	2.1	40
28	Modern analogues for Miocene to Pleistocene alkali basaltic phreatomagmatic fields in the Pannonian Basin: "soft-substrate―to "combined―aquifer controlled phreatomagmatism in intraplate volcanic fields Research Article. Open Geosciences, 2010, 2, .	1.7	15
29	Mechanisms driving polymagmatic activity at a monogenetic volcano, Udo, Jeju Island, South Korea. Contributions To Mineralogy and Petrology, 2010, 160, 931-950.	3.1	113
30	Preâ€eruption magma staging at the longâ€lived intraplate Dunedin Volcano, New Zealand. Terra Nova, 0, ,	2.1	1