
Li Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5247326/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Co-substitution strategy to achieve a novel efficient deep-red-emitting SrKYTeO6:Mn4+ phosphor for plant cultivation lighting. Journal of Alloys and Compounds, 2022, 906, 164243.	2.8	15
2	Fluorescenceâ€enhanced Cs 4 PbBr 6 /CsPbBr 3 composites films synthesized by doubleâ€films solid phase reaction method. Luminescence, 2021, 36, 631-641.	1.5	4
3	A novel inequivalent double-site substituted red phosphor Li ₄ AISbO ₆ :Mn ⁴⁺ with high color purity: its structure, photoluminescence properties, and application in warm white LEDs. Journal of Materials Chemistry C, 2021, 9, 13236-13246.	2.7	28
4	Chemical unit co-substitution for a new far-red-emitting phosphor Ca3-6(NaLu)3LiSbO6:Mn4+ to achieve high quantum efficiency and superb thermal stability. Materials Today Advances, 2021, 12, 100193.	2.5	6
5	<i>In situ</i> tetrafluoroborate-modified MAPbBr ₃ nanocrystals showing high photoluminescence, stability and self-assembly behavior. Journal of Materials Chemistry C, 2020, 8, 1989-1997.	2.7	8
6	Perovskite MAPb(Br1â^'Cl)3 single crystals: Solution growth and electrical properties. Journal of Crystal Growth, 2020, 549, 125869.	0.7	7
7	Eco-Friendly Strategy To Improve Durability and Stability of Zwitterionic Capping Ligand Colloidal CsPbBr ₃ Nanocrystals. Langmuir, 2020, 36, 6775-6781.	1.6	20
8	Photoflexoelectric effect in halide perovskites. Nature Materials, 2020, 19, 605-609.	13.3	132
9	Giant Stability Enhancement of CsPbX ₃ Nanocrystal Films by Plasma-Induced Ligand Polymerization. ACS Applied Materials & Interfaces, 2019, 11, 35270-35276.	4.0	36
10	<i>In situ</i> inclusion of thiocyanate for highly luminescent and stable CH ₃ NH ₃ PbBr ₃ perovskite nanocrystals. Nanoscale, 2019, 11, 1319-1325.	2.8	29
11	A new approach to stabilize the CsPbX3 quantum dots by double chemical coupling with stress. Journal of Alloys and Compounds, 2019, 782, 235-241.	2.8	7
12	Highly pure yellow light emission of perovskite CsPb(Br I)3 quantum dots and their application for yellow light-emitting diodes. Optical Materials, 2018, 80, 1-6.	1.7	17
13	Lithium and Silver Co-Doped Nickel Oxide Hole-Transporting Layer Boosting the Efficiency and Stability of Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 44501-44510.	4.0	73
14	Highly stable all-inorganic CsPbBr ₃ nanocrystals film encapsulated with alumina by plasma-enhanced atomic layer deposition. Materials Express, 2018, 8, 469-474.	0.2	3
15	Epitaxial growth of InN thin films by plasma-enhanced atomic layer deposition. Journal of Applied Physics, 2018, 124, .	1.1	10
16	Fluorescence enhancement of Tb3+-doped CaAl-LDH by cytosine. Journal of Luminescence, 2018, 204, 42-50.	1.5	3
17	Low temperature growth of polycrystalline InN films on non-crystalline substrates by plasma-enhanced atomic layer deposition. Applied Surface Science, 2018, 459, 830-834.	3.1	13
18	Large flexoelectricity in Al2O3-doped Ba(Ti0.85Sn0.15)O3 ceramics. Applied Physics Letters, 2017, 110, .	1.5	25

LI WANG

#	Article	IF	CITATIONS
19	Carrier transport via V-shaped pits in InGaN/GaN MQW solar cells. Chinese Physics B, 2017, 26, 038104.	0.7	2
20	Study on the band alignment of GaN/CH3NH3PbBr3 heterojunction by x-ray photoelectron spectroscopy. Applied Physics Letters, 2017, 111, .	1.5	3
21	<i>a</i> -Axis GaN/AlN/AlGaN Core–Shell Heterojunction Microwires as Normally Off High Electron Mobility Transistors. ACS Applied Materials & Interfaces, 2017, 9, 41435-41442.	4.0	14
22	Reduction of the resistivity of Ag/p-GaN contact by progressive breakdown of the interfacial contamination layer. Journal of Applied Physics, 2015, 118, 165703.	1.1	4
23	Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes. Journal of Applied Physics, 2014, 116, .	1.1	70
24	Crystallographic tilting of AlN/GaN layers on miscut Si (111) substrates. Materials Letters, 2014, 115, 89-91.	1.3	8
25	Influence of miscut angle of Si(111) substrates on the performance of InGaN LEDs. Applied Physics Express, 2014, 7, 012102.	1.1	3
26	Stress Distribution in GaN Films grown on Patterned Si (111) Substrates and Its Effect on LED Performance. Chinese Physics Letters, 2013, 30, 098101.	1.3	6
27	Effects of reflector-induced interferences on light extraction of InGaN/GaN vertical light emitting diodes. Journal of Luminescence, 2011, 131, 1836-1839.	1.5	4
28	Giant enhancement of top emission from ZnO thin film by nanopatterned Pt. Applied Physics Letters, 2009, 94, .	1.5	106
29	Photoluminescence of ZnO thin films grown on GaN templates by atmospheric pressure MOCVD. Journal of Luminescence, 2007, 122-123, 162-164.	1.5	17
30	The characteristics of GaN-based blue LED on Si substrate. Journal of Luminescence, 2007, 122-123, 185-187.	1.5	39
31	Study of polarization field in GaN-based blue LEDs on Si and sapphire substrate by electroluminescence. Journal of Luminescence, 2007, 122-123, 567-570.	1.5	14
32	The growth and properties of ZnO film on Si(111) substrate with an AlN buffer by AP-MOCVD. Journal of Luminescence, 2007, 122-123, 905-907.	1.5	18
33	Photoluminescence observations of hydrogen incorporation and outdiffusion in ZnO thin films. Journal of Luminescence, 2007, 124, 162-166.	1.5	6
34	The influence of the coating metals with various work function on the photoluminescence of a GaN-based blue LED wafer. Journal of Luminescence, 2007, 126, 636-640.	1.5	3
35	NH3-assisted growth approach for ZnO films by atmospheric pressure metal-organic chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2007, 89, 645-650.	1.1	18
36	Properties of ZnO films grown on (0001) sapphire substrate using H2O and N2O as O precursors by atmospheric pressure MOCVD. Journal of Crystal Growth, 2006, 290, 426-430.	0.7	45

LI WANG

#	Article	IF	CITATIONS
37	Effect of the initial thin Ti buffer layers on the quality of ZnO thin films grown on Si(111) substrates by MOCVD. Superlattices and Microstructures, 2006, 40, 56-63.	1.4	16
38	Comparisons of structural and optical properties of ZnO films grown on (0001) sapphire and GaN/(0001) sapphire template by atmospheric-pressure MOCVD. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 127, 280-284.	1.7	12
39	Different properties of GaN-based LED grown on Si(111) and transferred onto new substrate. Science in China Series D: Earth Sciences, 2006, 49, 313-321.	0.9	19
40	Study of structural and luminescent properties of high-quality ZnO thin films treatment with hydrogen peroxide solution. Materials Science in Semiconductor Processing, 2005, 8, 569-575.	1.9	6
41	Structural and luminescent properties of ZnO epitaxial film grown on Si(111) substrate by atmospheric-pressure MOCVD. Journal of Crystal Growth, 2005, 275, 486-491.	0.7	28
42	High-quality ZnO films grown by atmospheric pressure metal– organic chemical vapor deposition. Journal of Crystal Growth, 2005, 283, 87-92.	0.7	22
43	Atmospheric pressure MOCVD growth of high-quality ZnO films on GaN/Al2O3 templates. Journal of Crystal Growth, 2005, 283, 93-99.	0.7	42
44	Relationship between structure characteristic and blue luminescence in unintentional doped GaN layers. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 122, 72-75.	1.7	7
45	Influence of nitrogen annealing on structural and photoluminescent properties of ZnO thin film grown on c-Al2O3 by atmospheric pressure MOCVD. Materials Science in Semiconductor Processing, 2005, 8, 491-496.	1.9	11
46	Effect of high-temperature annealing on the structural and optical properties of ZnO films. Thin Solid Films, 2005, 491, 323-327.	0.8	39
47	Influence of hydrogen peroxide solution on the properties of ZnO thin films. Journal of Crystal Growth, 2004, 268, 71-75.	0.7	24
48	Study of the blue luminescence in unintentional doped GaN films grown by MOCVD. Journal of Luminescence, 2004, 106, 219-223.	1.5	16
49	The influence of Si-doping to the growth rate and yellow luminescence of GaN grown by MOCVD. Journal of Luminescence, 2001, 93, 321-326.	1.5	22
50	Growth of ZnO Films on Si(111) by Metalorganic Chemical Vapor Deposition with AlN and Low-Temperature ZnO Double Buffers. Advanced Materials Research, 0, 652-654, 594-598.	0.3	1
51	(CH3)2C=NHCH3PbBr3/CH3NH3PbBr3 Core-Shell Heterostruture Fabricated by In-Situ A-Site Reaction for Fast Response 1D Perovskite Photodetectors. Physical Chemistry Chemical Physics, 0, , .	1.3	1