
Magnus Röding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5246941/publications.pdf Version: 2024-02-01

ΜΑCNUS ΡΑΦΟΙΝΟ

#	Article	IF	CITATIONS
1	The gamma distribution model for pulsed-field gradient NMR studies of molecular-weight distributions of polymers. Journal of Magnetic Resonance, 2012, 222, 105-111.	2.1	72
2	Hemocompatibility of siRNA loaded dextran nanogels. Biomaterials, 2011, 32, 9120-9127.	11.4	62
3	On-chip light sheet illumination enables diagnostic size and concentration measurements of membrane vesicles in biofluids. Nanoscale, 2014, 6, 1741-1747.	5.6	53
4	The lognormal and gamma distribution models for estimating molecular weight distributions of polymers using PGSE NMR. Journal of Magnetic Resonance, 2016, 267, 54-62.	2.1	33
5	Fluorescence Lifetime Analysis of Graphene Quantum Dots. Journal of Physical Chemistry C, 2014, 118, 30282-30290.	3.1	31
6	Predicting permeability via statistical learning on higher-order microstructural information. Scientific Reports, 2020, 10, 15239.	3.3	28
7	Threeâ€dimensional reconstruction of porous polymer films from FIBâ€SEM nanotomography data using random forests. Journal of Microscopy, 2021, 281, 76-86.	1.8	26
8	Optimization of FIB–SEM Tomography and Reconstruction for Soft, Porous, and Poorly Conducting Materials. Microscopy and Microanalysis, 2020, 26, 837-845.	0.4	26
9	Gamma convolution models for self-diffusion coefficient distributions in PGSE NMR. Journal of Magnetic Resonance, 2015, 261, 6-10.	2.1	24
10	Multi-scale characterization of pasta during cooking using microscopy and real-time magnetic resonance imaging. Food Research International, 2014, 66, 132-139.	6.2	22
11	Measuring absolute number concentrations of nanoparticles using single-particle tracking. Physical Review E, 2011, 84, 031920.	2.1	21
12	Large-Scale Statistical Learning for Mass Transport Prediction in Porous Materials Using 90,000 Artificially Generated Microstructures. Frontiers in Materials, 2021, 8, .	2.4	21
13	Microstructure and water distribution of commercial pasta studied by microscopy and 3D magnetic resonance imaging. Food Research International, 2014, 62, 644-652.	6.2	18
14	Identifying directional persistence in intracellular particle motion using Hidden Markov Models. Mathematical Biosciences, 2014, 248, 140-145.	1.9	17
15	Carbon Nanotube Length Governs the Viscoelasticity and Permeability of Buckypaper. Polymers, 2017, 9, 115.	4.5	17
16	Obtaining T 1 - T 2 distribution functions from 1-dimensional T 1 and T 2 measurements: The pseudo 2-D relaxation model. Journal of Magnetic Resonance, 2016, 269, 186-195.	2.1	14
17	Computational Screening of Diffusive Transport in Nanoplatelet-Filled Composites: Use of Graphene To Enhance Polymer Barrier Properties. ACS Applied Nano Materials, 2018, 1, 160-167.	5.0	13
18	Computational high-throughput screening of fluid permeability in heterogeneous fiber materials. Soft Matter, 2016, 12, 6293-6299.	2.7	12

Magnus Röding

#	Article	IF	CITATIONS
19	Measuring absolute nanoparticle number concentrations from particle count time series. Journal of Microscopy, 2013, 251, 19-26.	1.8	11
20	Scaling exponent and dispersity of polymers in solution by diffusion NMR. Journal of Colloid and Interface Science, 2017, 493, 393-397.	9.4	9
21	Shape-dependent effective diffusivity in packings of hard cubes and cuboids compared with spheres and ellipsoids. Soft Matter, 2017, 13, 8864-8870.	2.7	9
22	A Highly Accurate Pixel-Based FRAP Model Based on Spectral-Domain Numerical Methods. Biophysical Journal, 2019, 116, 1348-1361.	0.5	9
23	Selfâ€calibrated concentration measurements of polydisperse nanoparticles. Journal of Microscopy, 2013, 252, 79-88.	1.8	8
24	3D high spatial resolution visualisation and quantification of interconnectivity in polymer films. International Journal of Pharmaceutics, 2020, 587, 119622.	5.2	8
25	Effective diffusivity in lattices of impermeable superballs. Physical Review E, 2018, 98, .	2.1	7
26	Approximate Bayesian computation for estimating number concentrations of monodisperse nanoparticles in suspension by optical microscopy. Physical Review E, 2016, 93, 063311.	2.1	6
27	DeepFRAP: Fast fluorescence recovery after photobleaching data analysis using deep neural networks. Journal of Microscopy, 2021, 282, 146-161.	1.8	6
28	Convolutional neural networks for segmentation of FIB‣EM nanotomography data from porous polymer films for controlled drug release. Journal of Microscopy, 2021, 283, 51-63.	1.8	6
29	The Power of Heterogeneity: Parameter Relationships from Distributions. PLoS ONE, 2016, 11, e0155718.	2.5	5
30	Structure evolution during phase separation in spin-coated ethylcellulose/hydroxypropylcellulose films. Soft Matter, 2021, 17, 3913-3922.	2.7	5
31	Estimation of mass thickness response of embedded aggregated silica nanospheres from high angle annular darkâ€field scanning transmission electron micrographs. Journal of Microscopy, 2014, 253, 166-170.	1.8	4
32	Stejskalâ€ŧanner equation for three asymmetrical gradient pulse shapes used in diffusion <scp>NMR</scp> . Concepts in Magnetic Resonance Part A: Bridging Education and Research, 2015, 44, 133-137.	0.5	3
33	Correlating 3D porous structure in polymer films with mass transport properties using FIB-SEM tomography. Chemical Engineering Science: X, 2021, 12, 100109.	1.5	3
34	Structure formation and coarsening kinetics of phase-separated spin-coated ethylcellulose/hydroxypropylcellulose films. Soft Matter, 2022, 18, 3206-3217.	2.7	3
35	New Characterization Measures of Pore Shape and Connectivity Applied to Coatings used for Controlled Drug Release. Journal of Pharmaceutical Sciences, 2021, 110, 2753-2764.	3.3	2
36	Magnetic alignment of nontronite dispersions. Applied Clay Science, 2015, 116-117, 167-174.	5.2	1

#	Article	IF	CITATIONS
37	Automatic particle detection in microscopy using temporal correlations. Microscopy Research and Technique, 2013, 76, 997-1006.	2.2	0
38	Massively parallel approximate Bayesian computation for estimating nanoparticle diffusion coefficients, sizes and concentrations using confocal laser scanning microscopy. Journal of Microscopy, 2018, 271, 174-182.	1.8	0
39	Tessellation-based stochastic modelling of 3D coating structures imaged with FIB-SEM tomography. Computational Materials Science, 2021, 197, 110611.	3.0	Ο