Tannishtha Reya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5246875/publications.pdf Version: 2024-02-01

ΤΛΝΝΙΩΗΤΗΛ ΡΕΥΛ

#	Article	IF	CITATIONS
1	Hematopoietic Stem Cells and Regeneration. Cold Spring Harbor Perspectives in Biology, 2022, 14, a040774.	2.3	3
2	AMD1 is required for the maintenance of leukemic stem cells and promotes chronic myeloid leukemic growth. Oncogene, 2021, 40, 603-617.	2.6	9
3	The Role of the Microenvironment and Immune System in Regulating Stem Cell Fate in Cancer. Trends in Cancer, 2021, 7, 624-634.	3.8	51
4	MARCH Proteins Mediate Responses to Antitumor Antibodies. Journal of Immunology, 2020, 205, 2883-2892.	0.4	5
5	A stem cell reporter based platform to identify and target drug resistant stem cells in myeloid leukemia. Nature Communications, 2020, 11, 5998.	5.8	8
6	Stem cells in cancer initiation and progression. Journal of Cell Biology, 2020, 219, .	2.3	69
7	Genomic and Epigenomic Landscaping Defines New Therapeutic Targets for Adenosquamous Carcinoma of the Pancreas. Cancer Research, 2020, 80, 4324-4334.	0.4	36
8	An in vivo genome-wide CRISPR screen identifies the RNA-binding protein Staufen2 as a key regulator of myeloid leukemia. Nature Cancer, 2020, 1, 410-422.	5.7	37
9	Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature, 2019, 569, 131-135.	13.7	287
10	A Multiscale Map of the Stem Cell State in Pancreatic Adenocarcinoma. Cell, 2019, 177, 572-586.e22.	13.5	107
11	Stem cell fate in cancer growth, progression and therapy resistance. Nature Reviews Cancer, 2018, 18, 669-680.	12.8	458
12	Epigenetic and Transcriptomic Profiling of Mammary Gland Development and Tumor Models Disclose Regulators of Cell State Plasticity. Cancer Cell, 2018, 34, 466-482.e6.	7.7	111
13	An In Vivo Genome-Wide CRISPR Screen Identifies Novel Dependencies for Blast Crisis Chronic Myelogenous Leukemia. Blood, 2018, 132, 1727-1727.	0.6	1
14	Glucose feeds the TCA cycle via circulating lactate. Nature, 2017, 551, 115-118.	13.7	1,112
15	Stress-Activated NRF2-MDM2 Cascade Controls Neoplastic Progression in Pancreas. Cancer Cell, 2017, 32, 824-839.e8.	7.7	97
16	Delayed onset of symptoms through feedback interference in chronic cancers. Convergent Science Physical Oncology, 2016, 2, 045002.	2.6	2
17	High-resolution imaging and computational analysis of haematopoietic cell dynamics in vivo. Nature Communications, 2016, 7, 12169.	5.8	27
18	CD98-Mediated Adhesive Signaling Enables the Establishment and Propagation of Acute Myelogenous Leukemia. Cancer Cell, 2016, 30, 792-805.	7.7	86

TANNISHTHA REYA

#	Article	IF	CITATIONS
19	Image-based detection and targeting of therapy resistance in pancreatic adenocarcinoma. Nature, 2016, 534, 407-411.	13.7	114
20	GLI2 inhibition abrogates human leukemia stem cell dormancy. Journal of Translational Medicine, 2015, 13, 98.	1.8	80
21	Musashi Signaling in Stem Cells and Cancer. Annual Review of Cell and Developmental Biology, 2015, 31, 249-267.	4.0	92
22	Tetraspanin 3 Is Required for the Development and Propagation of Acute Myelogenous Leukemia. Cell Stem Cell, 2015, 17, 152-164.	5.2	58
23	Fearful Symmetry: Subversion of Asymmetric Division in Cancer Development and Progression. Cancer Research, 2015, 75, 792-797.	0.4	51
24	Lis1 regulates asymmetric division in hematopoietic stem cells and in leukemia. Nature Genetics, 2014, 46, 245-252.	9.4	97
25	Loss of \hat{I}^2 -catenin triggers oxidative stress and impairs hematopoietic regeneration. Genes and Development, 2014, 28, 995-1004.	2.7	69
26	Ubiquitin-conjugating enzyme Ubc13 controls breast cancer metastasis through a TAK1-p38 MAP kinase cascade. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13870-13875.	3.3	99
27	Engineering a BCR-ABL–activated caspase for the selective elimination of leukemic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2300-2305.	3.3	5
28	β-Arrestin2 mediates the initiation and progression of myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12532-12537.	3.3	53
29	aSIRTing Control over Cancer Stem Cells. Cancer Cell, 2012, 21, 140-142.	7.7	12
30	Illuminating Immune Privilege — A Role for Regulatory T Cells in Preventing Rejection. New England Journal of Medicine, 2011, 365, 956-957.	13.9	6
31	Cycling Toward Leukemia Stem Cell Elimination Wtih a Selective Sonic Hedgehog Antagonist,. Blood, 2011, 118, 3776-3776.	0.6	5
32	Itraconazole, a Commonly Used Antifungal that Inhibits Hedgehog Pathway Activity and Cancer Growth. Cancer Cell, 2010, 17, 388-399.	7.7	454
33	Regulation of myeloid leukaemia by the cell-fate determinant Musashi. Nature, 2010, 466, 765-768.	13.7	315
34	Pleiotrophin regulates the expansion and regeneration of hematopoietic stem cells. Nature Medicine, 2010, 16, 475-482.	15.2	252
35	Human Blast Crisis Leukemia Stem Cell Inhibition with a Novel Smoothened Antagonist Blood, 2010, 116, 1223-1223.	0.6	10
36	Facilitation of Hematopoietic Reconstitution Via Inhibition of Bone Marrow Endothelial Cell-Mediated SDF-1 Signaling Blood, 2010, 116, 3859-3859.	0.6	0

TANNISHTHA REYA

#	Article	IF	CITATIONS
37	Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature, 2009, 458, 776-779.	13.7	801
38	Divide and conquer: how asymmetric division shapes cell fate in the hematopoietic system. Current Opinion in Immunology, 2008, 20, 302-307.	2.4	16
39	Activation of Wnt Signaling in Hematopoietic Regeneration. Stem Cells, 2008, 26, 1202-1210.	1.4	47
40	Inhibition of Apoptosome Formation by Suppression of Hsp90β Phosphorylation in Tyrosine Kinase-Induced Leukemias. Molecular and Cellular Biology, 2008, 28, 5494-5506.	1.1	80
41	Imaging Asymmetric Division in Stem Cells and Cancer Blood, 2008, 112, sci-42-sci-42.	0.6	0
42	Identification of Adiponectin as a Novel Hemopoietic Stem Cell Growth Factor. Journal of Immunology, 2007, 178, 3511-3520.	0.4	165
43	Glycogen Synthase Kinase 3α and 3β Mediate a Glucose-Sensitive Antiapoptotic Signaling Pathway To Stabilize Mcl-1. Molecular and Cellular Biology, 2007, 27, 4328-4339.	1.1	177
44	Imaging Hematopoietic Precursor Division in Real Time. Cell Stem Cell, 2007, 1, 541-554.	5.2	257
45	Loss of \hat{I}^2 -Catenin Impairs the Renewal of Normal and CML Stem Cells In Vivo. Cancer Cell, 2007, 12, 528-541.	7.7	569
46	Frizzled 9 knock-out mice have abnormal B-cell development. Blood, 2005, 105, 2487-2494.	0.6	95
47	Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nature Immunology, 2005, 6, 314-322.	7.0	712
48	Wnt signalling in stem cells and cancer. Nature, 2005, 434, 843-850.	13.7	3,334
49	Calmodulin-dependent Protein Kinase IV Regulates Hematopoietic Stem Cell Maintenance. Journal of Biological Chemistry, 2005, 280, 33101-33108.	1.6	68
50	Identification of Novel Regulators of Hematopoietic Stem Cell Mobilization Blood, 2005, 106, 1724-1724.	0.6	0
51	Wnt signaling in the stem cell niche. Current Opinion in Hematology, 2004, 11, 88-94.	1.2	101
52	Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003, 423, 448-452.	13.7	2,006
53	A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 2003, 423, 409-414.	13.7	1,981
54	The elements of stem cell self-renewal: a genetic perspective. BioTechniques, 2003, 35, 1240-1247.	0.8	18

4

TANNISHTHA REYA

#	Article	IF	CITATIONS
55	Regulation of Hematopoietic Stem Cell Self-Renewal. Endocrine Reviews, 2003, 58, 283-295.	7.1	97
56	Stem cells, cancer, and cancer stem cells. Nature, 2001, 414, 105-111.	13.7	8,665
57	Lymphoid precursors. Current Opinion in Immunology, 2000, 12, 144-150.	2.4	76
58	Wnt Signaling Regulates B Lymphocyte Proliferation through a LEF-1 Dependent Mechanism. Immunity, 2000, 13, 15-24.	6.6	394
59	Mechanisms of Intestinal Epithelial Cell Injury and Colitis in Interleukin 2 (IL2)-Deficient Mice. Cellular Immunology, 1998, 187, 52-66.	1.4	41
60	Transcriptional regulation of B-cell differentiation. Current Opinion in Immunology, 1998, 10, 158-165.	2.4	70
61	Thymic Stromal-Cell Abnormalities and Dysregulated T-Cell Development in IL-2-Deficient Mice. Autoimmunity, 1998, 5, 287-302.	0.6	16
62	Stem cells, cancer, and cancer stem cells. , 0, .		3