Peter Casper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5246673/publications.pdf

Version: 2024-02-01

186209 206029 2,403 57 28 48 h-index citations g-index papers 61 61 61 3275 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Spatial methane pattern in a deep freshwater lake: Relation to water depth and topography. Science of the Total Environment, 2021, 764, 142829.	3.9	10
2	Energy Flux Paths in Lakes and Reservoirs. Water (Switzerland), 2021, 13, 3270.	1.2	5
3	Geochemical focusing and sequestration of manganese during eutrophication of Lake Stechlin (NE) Tj ETQq $1\ 1$	0.78431 <i>4</i> 1.7	∤rgBT/Overloc
4	Long-Read Amplicon Sequencing of Nitric Oxide Dismutase (nod) Genes Reveal Diverse Oxygenic Denitrifiers in Agricultural Soils and Lake Sediments. Microbial Ecology, 2020, 80, 243-247.	1.4	12
5	Diel variation of CH ₄ and CO ₂ dynamics in two contrasting temperate lakes. Inland Waters, 2020, 10, 333-347.	1.1	13
6	Methane emissions from contrasting urban freshwaters: Rates, drivers, and a whole ity footprint. Global Change Biology, 2019, 25, 4234-4243.	4.2	44
7	Old sins have long shadows: climate change weakens efficiency of trophic coupling of phyto- and zooplankton in a deep oligo-mesotrophic lowland lake (Stechlin, Germany)—a causality analysis. Hydrobiologia, 2019, 831, 101-117.	1.0	29
8	Greenhouse gas emissions from a semi-arid tropical reservoir in northeastern Brazil. Regional Environmental Change, 2018, 18, 1901-1912.	1.4	12
9	Water management and aquatic ecosystem services of a tropical reservoir (Itaparica, São Francisco,) Tj ETQq1	1 0.7843 1.4	314 rggBT /Over
10	Methane production increases with warming and carbon additions to incubated sediments from a semiarid reservoir. Inland Waters, 2018, 8, 109-121.	1.1	13
11	Eutrophication exacerbates the impact of climate warming on lake methane emission. Science of the Total Environment, 2018, 636, 411-419.	3.9	95
12	Phytoplankton response to experimental thermocline deepening: a mesocosm experiment. Hydrobiologia, 2018, 805, 259-271.	1.0	8
13	Assessment of methane and carbon dioxide emissions in two subâ€basins of a small acidic bog lake artificially divided 30Âyears ago. Freshwater Biology, 2018, 63, 1534-1549.	1.2	8
14	Ubiquitous and significant anaerobic oxidation of methane in freshwater lake sediments. Water Research, 2018, 144, 332-340.	5 . 3	84
15	Shifts among Eukaryota, Bacteria, and Archaea define the vertical organization of a lake sediment. Microbiome, 2017, 5, 41.	4.9	60
16	Effects of artificial thermocline deepening on sedimentation rates and microbial processes in the sediment. Hydrobiologia, 2017, 799, 65-81.	1.0	10
17	Thermocline deepening boosts ecosystem metabolism: evidence from a largeâ€scale lake enclosure experiment simulating a summer storm. Global Change Biology, 2017, 23, 1448-1462.	4.2	55
18	Spatial and temporal patterns of benthic diatom flora in Lake Stechlin, Germany. Turkish Journal of Botany, 2017, 41, 211-222.	0.5	5

#	Article	IF	Citations
19	Effects of increasing temperatures on methane concentrations and methanogenesis during experimental incubation of sediments from oligotrophic and mesotrophic lakes. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1394-1406.	1.3	53
20	The importance of landscape diversity for carbon fluxes at the landscape level: smallâ€scale heterogeneity matters. Wiley Interdisciplinary Reviews: Water, 2016, 3, 601-617.	2.8	32
21	Proteomic evidence of methanotrophy in methaneâ€enriched hypolimnetic lake water. Limnology and Oceanography, 2016, 61, S91.	1.6	6
22	Coincidence of sedimentation peaks with diatom blooms, wind, and calcite precipitation measured in high resolution by a multi-trap. Hydrobiologia, 2016, 763, 329-344.	1.0	12
23	Spatial- and niche segregation of DCM-forming cyanobacteria in Lake Stechlin (Germany). Hydrobiologia, 2016, 764, 229-240.	1.0	30
24	Enhancing Surface Methane Fluxes from an Oligotrophic Lake: Exploring the Microbubble Hypothesis. Environmental Science & Envi	4.6	69
25	Presence of Potential Toxin-Producing Cyanobacteria in an Oligo-Mesotrophic Lake in Baltic Lake District, Germany: An Ecological, Genetic and Toxicological Survey. Toxins, 2014, 6, 2912-2931.	1.5	29
26	Stable carbon isotope biogeochemistry of propionate and acetate in methanogenic soils and lake sediments. Organic Geochemistry, 2014, 73, 1-7.	0.9	37
27	Viriobenthos in aquatic sediments: variability in abundance and production and impact on the C-cycle. Aquatic Sciences, 2013, 75, 571-579.	0.6	15
28	Cyanobacterial diversity in the hot spring, pelagic and benthic habitats of a tropical soda lake. FEMS Microbiology Ecology, 2013, 85, 389-401.	1.3	71
29	Chemolithotrophic nitrate-dependent Fe(II)-oxidizing nature of actinobacterial subdivision lineage TM3. ISME Journal, 2013, 7, 1582-1594.	4.4	30
30	Using stable isotope probing to obtain a targeted metatranscriptome of aerobic methanotrophs in lake sediment. Environmental Microbiology Reports, 2013, 5, 757-764.	1.0	60
31	Assessing the Effect of Litter Species on the Dynamic of Bacterial and Fungal Communities during Leaf Decomposition in Microcosm by Molecular Techniques. PLoS ONE, 2013, 8, e84613.	1.1	20
32	Phormidium etoshii sp. nov. (Oscillatoriales, Cyanobacteria) described from the Etosha Pan, Namibia, based on morphological, molecular and ecological features Fottea, 2013, 13, 235-244.	0.4	18
33	Effects of pelagic food web structure and nutrient concentration on anaerobic methane metabolism in lake sediments. Aquatic Sciences, 2012, 74, 133-142.	0.6	1
34	DNAâ€, rRNA―and mRNAâ€based stable isotope probing of aerobic methanotrophs in lake sediment. Environmental Microbiology, 2011, 13, 1153-1167.	1.8	115
35	Phylogenetic relationship and divergence among planktonic strains of ⟨i⟩Arthrospira ⟨ /i⟩ (Oscillatoriales, Cyanobacteria) of African, Asian and American origin deduced by 16S–23S ITS and phycocyanin operon sequences. Phycologia, 2010, 49, 361-372.	0.6	45
36	Diffusive fluxes of CH4 and CO2 across the water-air interface in the eutrophic Lake Dagow, northeast Germany. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2009, 30, 874-877.	0.1	4

#	Article	IF	CITATIONS
37	Molecular detection of uncultured cyanobacteria and aminotransferase domains for cyanotoxin production in sediments of different Kenyan lakes. FEMS Microbiology Ecology, 2009, 68, 340-350.	1.3	20
38	Characterization of stable isotope fractionation during methane production in the sediment of a eutrophic lake, Lake Dagow, Germany. Limnology and Oceanography, 2009, 54, 457-471.	1.6	65
39	Vegetation cover of forest, shrub and pasture strongly influences soil bacterial community structure as revealed by 16S rRNA gene T-RFLP analysis. FEMS Microbiology Ecology, 2008, 64, 449-458.	1.3	41
40	Characterization of methanogenic Archaea and stable isotope fractionation during methane production in the profundal sediment of an oligotrophic lake (Lake Stechlin, Germany). Limnology and Oceanography, 2007, 52, 1393-1406.	1.6	82
41	16S rRNA gene analyses of bacterial community structures in the soils of evergreen broad-leaved forests in south-west China. FEMS Microbiology Ecology, 2006, 58, 247-259.	1.3	98
42	Carbon Isotope Fractionation during Acetoclastic Methanogenesis by Methanosaeta concilii in Culture and a Lake Sediment. Applied and Environmental Microbiology, 2006, 72, 5648-5652.	1.4	98
43	Vertical distribution of structure and function of the methanogenic archaeal community in Lake Dagow sediment. Environmental Microbiology, 2005, 7, 1139-1149.	1.8	135
44	P-immobilisation and phosphatase activities in lake sediment following treatment with nitrate and iron. Limnologica, 2005, 35, 102-108.	0.7	25
45	Sediment treatment with a nitrate-storing compound to reduce phosphorus release. Water Research, 2005, 39, 494-500.	5. 3	57
46	Organic matter composition in the sediment of three Brazilian coastal lagoons: district of Macaé, Rio de Janeiro (Brazil). Anais Da Academia Brasileira De Ciencias, 2004, 76, 29-47.	0.3	13
47	Methane in an acidic bog lake: The influence of peat in the catchment on the biogeochemistry of methane. Aquatic Sciences, 2003, 65, 36-46.	0.6	45
48	Methanogenesis in an impacted and two dystrophic coastal lagoons (Maca \tilde{A} ©, Brazil). Brazilian Archives of Biology and Technology, 2002, 45, 195-202.	0.5	11
49	Methanogenic archaeal community in the sediment of an artificially partitioned acidic bog lake. FEMS Microbiology Ecology, 2002, 42, 119-129.	1.3	43
50	Methanogenic archaeal community in the sediment of an artificially partitioned acidic bog lake. FEMS Microbiology Ecology, 2002, 42, 119-129.	1.3	5
51	Bacterioplankton abundance, biomass and production in a Brazilian coastal lagoon and in two German lakes. Anais Da Academia Brasileira De Ciencias, 2001, 73, 39-49.	0.3	11
52	Mechanisms of phosphorus release from the bottom sediment of the oligotrophic Lake Stechlin: Importance of the permanently oxic sediment surface. Fundamental and Applied Limnology, 2001, 151, 203-219.	0.4	34
53	Fluxes of methane and carbon dioxide from a small productive lake to the atmosphere. Biogeochemistry, 2000, 49, 1-19.	1.7	244
54	Factors influencing methane production in an oligotrophic and in a eutrophic German lake. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 1441-1445.	0.1	0

PETER CASPER

#	Article	IF	CITATIONS
55	Heterotrophic bacterial production in a Brazilian humic coastal lagoon. Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology, 2000, 27, 1866-1869.	0.1	0
56	Different methods for extracting bacteria from freshwater sediment and a simple method to measure bacterial production in sediment samples. Journal of Microbiological Methods, 2000, 41, 249-257.	0.7	50
57	Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany). Water Science and Technology, 1998, 37, 51-58.	1.2	182