
Dixie L Mager

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5246086/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inter-Strain Epigenomic Profiling Reveals a Candidate IAP Master Copy in C3H Mice. Viruses, 2020, 12, 783.	1.5	9
2	Integrin-Linked Kinase Mediates Therapeutic Resistance of Quiescent CML Stem Cells to Tyrosine Kinase Inhibitors. Cell Stem Cell, 2020, 27, 110-124.e9.	5.2	29
3	Loss of m1acp3Î [°] Ribosomal RNA Modification Is a Major Feature of Cancer. Cell Reports, 2020, 31, 107611.	2.9	64
4	Endogenous Retrovirus Transcript Levels Are Associated with Immunogenic Signatures in Multiple Metastatic Cancer Types. Molecular Cancer Therapeutics, 2020, 19, 1889-1897.	1.9	10
5	Mouse germ line mutations due to retrotransposon insertions. Mobile DNA, 2019, 10, 15.	1.3	81
6	LIONS: analysis suite for detecting and quantifying transposable element initiated transcription from RNA-seq. Bioinformatics, 2019, 35, 3839-3841.	1.8	27
7	Reality check for transposon enhancers. ELife, 2019, 8, .	2.8	3
8	Ten things you should know about transposable elements. Genome Biology, 2018, 19, 199.	3.8	817
9	On the role of H3.3 in retroviral silencing. Nature, 2017, 548, E1-E3.	13.7	19
10	Epigenetic modifier drugs trigger widespread transcription of endogenous retroviruses. Nature Genetics, 2017, 49, 974-975.	9.4	7
11	A novel isoform of IL-33 revealed by screening for transposable element promoted genes in human colorectal cancer. PLoS ONE, 2017, 12, e0180659.	1.1	17
12	Induction of endogenous retroelements as a potential mechanism for mouse-specific drug-induced carcinogenicity. PLoS ONE, 2017, 12, e0176768.	1.1	3
13	Endogenous retroviral promoter exaptation in human cancer. Mobile DNA, 2016, 7, 24.	1.3	178
14	Pluripotency and the endogenous retrovirus HERVH: Conflict or serendipity?. BioEssays, 2016, 38, 109-117.	1.2	63
15	Transposable elements in the mammalian embryo: pioneers surviving through stealth and service. Genome Biology, 2016, 17, 100.	3.8	138
16	Onco-exaptation of an endogenous retroviral LTR drives IRF5 expression in Hodgkin lymphoma. Oncogene, 2016, 35, 2542-2546.	2.6	81
17	Methylated DNA Immunoprecipitation Analysis of Mammalian Endogenous Retroviruses. Methods in Molecular Biology, 2016, 1400, 377-385.	0.4	2
18	Mammalian Endogenous Retroviruses. Microbiology Spectrum, 2015, 3, MDNA3-0009-2014.	1.2	151

#	Article	IF	CITATIONS
19	Mammalian Endogenous Retroviruses. , 2015, , 1079-1100.		10
20	Epigenetic mechanism causes Wnt9b deficiency and nonsyndromic cleft lip and palate in the A/WySn mouse strain. Birth Defects Research Part A: Clinical and Molecular Teratology, 2014, 100, 772-788.	1.6	35
21	Distinct isoform of FABP7 revealed by screening for retroelement-activated genes in diffuse large B-cell lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E3534-43.	3.3	62
22	Genistein versus ICI 182, 780: An ally or enemy in metastatic progression of prostate cancer. Prostate, 2013, 73, 1747-1760.	1.2	15
23	Visualized Computational Predictions of Transcriptional Effects by Intronic Endogenous Retroviruses. PLoS ONE, 2013, 8, e71971.	1.1	7
24	Role of Runt-related Transcription Factor 3 (RUNX3) in Transcription Regulation of Natural Cytotoxicity Receptor 1 (NCR1/NKp46), an Activating Natural Killer (NK) Cell Receptor. Journal of Biological Chemistry, 2012, 287, 7324-7334.	1.6	32
25	Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biology, 2012, 13, R89.	13.9	56
26	Transposable Elements: An Abundant and Natural Source of Regulatory Sequences for Host Genes. Annual Review of Genetics, 2012, 46, 21-42.	3.2	462
27	C-GATE - catalogue of genes affected by transposable elements. Mobile DNA, 2012, 3, 9.	1.3	40
28	Gene Properties and Chromatin State Influence the Accumulation of Transposable Elements in Genes. PLoS ONE, 2012, 7, e30158.	1.1	10
29	Transposable elements: not as quiet as a mouse. Genome Biology, 2012, 13, 159.	13.9	6
30	DNA Methylation and SETDB1/H3K9me3 Regulate Predominantly Distinct Sets of Genes, Retroelements, and Chimeric Transcripts in mESCs. Cell Stem Cell, 2011, 8, 676-687.	5.2	427
31	H3K9me3-binding proteins are dispensable for SETDB1/H3K9me3-dependent retroviral silencing. Epigenetics and Chromatin, 2011, 4, 12.	1.8	43
32	The <i>clf2</i> gene has an epigenetic role in the multifactorial etiology of cleft lip and palate in the A/WySn mouse strain. Birth Defects Research Part A: Clinical and Molecular Teratology, 2011, 91, 716-727.	1.6	32
33	Human Th1 and Th17 Cells Exhibit Epigenetic Stability at Signature Cytokine and Transcription Factor Loci. Journal of Immunology, 2011, 187, 5615-5626.	0.4	109
34	Placenta-specific Expression of the Interleukin-2 (IL-2) Receptor Î ² Subunit from an Endogenous Retroviral Promoter. Journal of Biological Chemistry, 2011, 286, 35543-35552.	1.6	41
35	Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5718-5723.	3.3	105
36	Distributions of Transposable Elements Reveal Hazardous Zones in Mammalian Introns. PLoS Computational Biology, 2011, 7, e1002046.	1.5	77

#	Article	IF	CITATIONS
37	Retrotransposon-Induced Heterochromatin Spreading in the Mouse Revealed by Insertional Polymorphisms. PLoS Genetics, 2011, 7, e1002301.	1.5	129
38	Potential mechanisms of endogenous retroviral-mediated genomic instability in human cancer. Seminars in Cancer Biology, 2010, 20, 246-253.	4.3	88
39	Identification of E74-like factor 1 (ELF1) as a transcriptional regulator of the Hox cofactor MEIS1. Experimental Hematology, 2010, 38, 798-808.e2.	0.2	24
40	Meis1 disrupts the genomic imprint of Dlk1 in a NUP98-HOXD13 leukemia model. Leukemia, 2010, 24, 1788-1791.	3.3	4
41	Variable DNA methylation of transposable elements: The case study of mouse Early Transposons. Epigenetics, 2010, 5, 68-79.	1.3	28
42	Expression of the leukemic prognostic marker CD7 is linked to epigenetic modifications in chronic myeloid leukemia. Molecular Cancer, 2010, 9, 41.	7.9	15
43	Creation of the two isoforms of rodent NKG2D was driven by a B1 retrotransposon insertion. Nucleic Acids Research, 2009, 37, 3032-3043.	6.5	13
44	Human Endogenous Retroviral Long Terminal Repeat Sequences as Cell Type-Specific Promoters in Retroviral Vectors. Journal of Virology, 2009, 83, 12643-12650.	1.5	22
45	Evidence for high bi-allelic expression of activating Ly49 receptors. Nucleic Acids Research, 2009, 37, 5331-5342.	6.5	19
46	Preferential Epigenetic Suppression of the Autonomous MusD over the Nonautonomous ETn Mouse Retrotransposons. Molecular and Cellular Biology, 2009, 29, 2456-2468.	1.1	16
47	Isolation of human iPS cells using EOS lentiviral vectors to select for pluripotency. Nature Methods, 2009, 6, 370-376.	9.0	274
48	Endogenous retroviral LTRs as promoters for human genes: A critical assessment. Gene, 2009, 448, 105-114.	1.0	261
49	A Novel Protein Isoform of the Multicopy Human NAIP Gene Derives from Intragenic Alu SINE Promoters. PLoS ONE, 2009, 4, e5761.	1.1	47
50	Endogenous retroviruses. Cellular and Molecular Life Sciences, 2008, 65, 3329-3347.	2.4	157
51	MiRNAs, epigenetics, and cancer. Mammalian Genome, 2008, 19, 517-25.	1.0	75
52	DNA methylation in ES cells requires the lysine methyltransferase G9a but not its catalytic activity. EMBO Journal, 2008, 27, 2691-2701.	3.5	207
53	Genome-Wide Assessments Reveal Extremely High Levels of Polymorphism of Two Active Families of Mouse Endogenous Retroviral Elements. PLoS Genetics, 2008, 4, e1000007.	1.5	90
54	Widely variable endogenous retroviral methylation levels in human placenta. Nucleic Acids Research, 2007, 35, 4743-4754.	6.5	86

#	Article	IF	CITATIONS
55	Repeated Recruitment of LTR Retrotransposons as Promoters by the Anti-Apoptotic Locus NAIP during Mammalian Evolution. PLoS Genetics, 2007, 3, e10.	1.5	100
56	Stochastic epigenetic silencing of retrotransposons: Does stability come with age?. Gene, 2007, 390, 130-135.	1.0	19
57	Plasticity of Ly49g expression is due to epigenetics. Molecular Immunology, 2007, 44, 821-826.	1.0	11
58	Expression of murine killer immunoglobulin-like receptor KIRL1 on CD1d-independent NK1.1+ T cells. Immunogenetics, 2007, 59, 641-651.	1.2	5
59	Multiple effects govern endogenous retrovirus survival patterns in human gene introns. Genome Biology, 2006, 7, R86.	13.9	77
60	Transcription of two human genes from a bidirectional endogenous retrovirus promoter. Gene, 2006, 366, 335-342.	1.0	85
61	Prolactin in man: a tale of two promoters. BioEssays, 2006, 28, 1051-1055.	1.2	100
62	Retroviral Elements and Their Hosts: Insertional Mutagenesis in the Mouse Germ Line. PLoS Genetics, 2006, 2, e2.	1.5	306
63	A Role for DNA Hypomethylation and Histone Acetylation in Maintaining Allele-Specific Expression of Mouse NKG2A in Developing and Mature NK Cells. Journal of Immunology, 2006, 177, 414-421.	0.4	14
64	Evidence for Epigenetic Maintenance of <i>Ly49a</i> Monoallelic Gene Expression. Journal of Immunology, 2006, 176, 2991-2999.	0.4	37
65	Transcription of the human and rodent SPAM1 / PH-20 genes initiates within an ancient endogenous retrovirus. BMC Genomics, 2005, 6, 47.	1.2	20
66	Investigations of the genomic region that contains theclf1 mutation, a causal gene in multifactorial cleft lip and palate in mice. Birth Defects Research Part A: Clinical and Molecular Teratology, 2005, 73, 103-113.	1.6	54
67	Genomic deletions and precise removal of transposable elements mediated by short identical DNA segments in primates. Genome Research, 2005, 15, 1243-1249.	2.4	110
68	Transcriptional Regulation of Early Transposon Elements, an Active Family of Mouse Long Terminal Repeat Retrotransposons. Journal of Virology, 2005, 79, 13865-13874.	1.5	49
69	Endogenous retrovirus long terminal repeats as ready-to-use mobile promoters: The case of primate l²3GAL-T5. Gene, 2005, 364, 2-12.	1.0	50
70	Impact of transposable elements on the evolution of mammalian gene regulation. Cytogenetic and Genome Research, 2005, 110, 342-352.	0.6	134
71	Multiple Groups of Endogenous Betaretroviruses in Mice, Rats, and Other Mammals. Journal of Virology, 2004, 78, 5784-5798.	1.5	70
72	Rapid expansion of the Ly49 gene cluster in rat. Genomics, 2004, 84, 218-221.	1.3	25

#	Article	IF	CITATIONS
73	Identification of a new murine lectin-like gene in close proximity to CD94. Immunogenetics, 2003, 55, 53-56.	1.2	8
74	Ly49 genes in non-rodent mammals. Immunogenetics, 2003, 55, 109-115.	1.2	48
75	Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends in Genetics, 2003, 19, 530-536.	2.9	399
76	Complex controls: the role of alternative promoters in mammalian genomes. Trends in Genetics, 2003, 19, 640-648.	2.9	283
77	An endogenous retroviral long terminal repeat is the dominant promoter for human Â1,3-galactosyltransferase 5 in the colon. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12841-12846.	3.3	109
78	Transcriptional Control of Murine <i>CD94</i> Gene: Differential Usage of Dual Promoters by Lymphoid Cell Types. Journal of Immunology, 2003, 171, 4219-4226.	0.4	24
79	Functional Analysis of the Endogenous Retroviral Promoter of the Human Endothelin B Receptor Gene. Journal of Virology, 2003, 77, 7459-7466.	1.5	58
80	Structure and Expression of Mobile ETnII Retroelements and Their Coding-Competent MusD Relatives in the Mouse. Journal of Virology, 2003, 77, 11448-11458.	1.5	49
81	Acquisition of MHC-Specific Receptors on Murine Natural Killer Cells. Critical Reviews in Immunology, 2003, 23, 251-266.	1.0	21
82	The Opitz Syndrome Gene Mid1 Is Transcribed from a Human Endogenous Retroviral Promoter. Molecular Biology and Evolution, 2002, 19, 1934-1942.	3.5	98
83	Retroelement Distributions in the Human Genome: Variations Associated With Age and Proximity to Genes. Genome Research, 2002, 12, 1483-1495.	2.4	297
84	Widely Spaced Alternative Promoters, Conserved between Human and Rodent, Control Expression of the Opitz Syndrome Gene MID1. Genomics, 2002, 80, 499-508.	1.3	25
85	Sequence Analysis of the Ly49 Cluster in C57BL/6 Mice: A Rapidly Evolving Multigene Family in the Immune System. Genomics, 2002, 80, 646-661.	1.3	68
86	Evolution of NK receptors: a single Ly49 and multiple KIR genes in the cow. European Journal of Immunology, 2002, 32, 810.	1.6	72
87	Insertional polymorphisms of ETn retrotransposons include a disruption of the wiz gene in C57BL/6 mice. Mammalian Genome, 2002, 13, 423-428.	1.0	32
88	Widely Spaced Alternative Promoters, Conserved between Human and Rodent, Control Expression of the Opitz Syndrome Gene. Genomics, 2002, 80, 499-508.	1.3	4
89	Widely spaced alternative promoters, conserved between human and rodent, control expression of the Opitz syndrome gene MID1. Genomics, 2002, 80, 499-508.	1.3	9
90	Repetitive Elements in the 5′ Untranslated Region of a Human Zinc-Finger Gene Modulate Transcription and Translation Efficiency. Genomics, 2001, 76, 110-116.	1.3	55

#	Article	IF	CITATIONS
91	Functional analysis of 5? and 3? regions of the closely related Ly49c and j genes. Immunogenetics, 2001, 52, 212-223.	1.2	19
92	Comparative analysis of the promoter regions and transcriptional start sites of mouse Ly49 genes. Immunogenetics, 2001, 53, 215-224.	1.2	24
93	Ly49 and CD94/NKG2: developmentally regulated expression and evolution. Immunological Reviews, 2001, 181, 90-103.	2.8	64
94	Evolution of natural killer cell receptors. Current Biology, 2001, 11, 626-630.	1.8	52
95	Long Terminal Repeats Are Used as Alternative Promoters for the Endothelin B Receptor and Apolipoprotein C-I Genes in Humans. Journal of Biological Chemistry, 2001, 276, 1896-1903.	1.6	176
96	The genomic organization of the mouse CD94 C-type lectin gene. International Journal of Immunogenetics, 2000, 27, 149-151.	1.2	7
97	Novel Mouse Type D Endogenous Proviruses and ETn Elements Share Long Terminal Repeat and Internal Sequences. Journal of Virology, 2000, 74, 7221-7229.	1.5	49
98	Isolation of a Human Endogenous Retroviral HERV-H Element with an Open env Reading Frame. Virology, 1999, 258, 441-450.	1.1	45
99	Expression analysis of new Ly49 genes: most transcripts of Ly49j lack the transmembrane domain. Immunogenetics, 1999, 49, 685-691.	1.2	29
100	Cloning of murine NKG2A, B and C: second family of C-type lectin receptors on murine NK cells. European Journal of Immunology, 1999, 29, 755-761.	1.6	52
101	Human endogenous retroviruses and pathogenicity: genomic considerations. Trends in Microbiology, 1999, 7, 431.	3.5	10
102	Intergenic Splicing between a HERV-H Endogenous Retrovirus and Two Adjacent Human Genes. Genomics, 1999, 57, 371-379.	1.3	63
103	Endogenous Retroviruses Provide the Primary Polyadenylation Signal for Two New Human Genes (HHLA2 and HHLA3). Genomics, 1999, 59, 255-263.	1.3	124
104	Cloning of murine NKG2A, B and C: second family of C-type lectin receptors on murine NK cells. , 1999, 29, 755.		6
105	Localization of five new Ly49 genes, including three closely related to Ly49c. Immunogenetics, 1998, 48, 174-183.	1.2	75
106	Otoconin-90, the mammalian otoconial matrix protein, contains two domains of homology to secretory phospholipase A2. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15345-15350.	3.3	128
107	Human-Specific Integrations of the HERV-K Endogenous Retrovirus Family. Journal of Virology, 1998, 72, 9782-9787.	1.5	205
108	A Human Endogenous Retrovirus Suppresses Translation of an Associated Fusion Transcript, PLA2L. Journal of Virology, 1998, 72, 6164-6168.	1.5	27

#	Article	IF	CITATIONS
109	Genomic Structure and Evolution of a Novel Gene (PLA2L) with Duplicated Phospholipase A2-like Domains. Genomics, 1997, 39, 38-46.	1.3	19
110	The Ly-49 family: genes, proteins and recognition of class I MHC. Immunological Reviews, 1997, 155, 67-77.	2.8	169
111	Transcripts from a Novel Human KRAB Zinc Finger Gene Contain SplicedAluand Endogenous Retroviral Segments. Genomics, 1996, 33, 463-472.	1.3	23
112	Gain of Sp1 Sites and Loss of Repressor Sequences Associated with a Young, Transcriptionally Active Subset of HERV-H Endogenous Long Terminal Repeats. Virology, 1996, 220, 213-218.	1.1	28
113	Recognition of class I major histocompatibility complex molecules by Ly-49: specificities and domain interactions Journal of Experimental Medicine, 1996, 183, 1553-1559.	4.2	99
114	Heterogeneity Among Ly-49C Natural Killer (NK) Cells: Characterization of Highly Related Receptors with Differing Functions and Expression Patterns. Journal of Experimental Medicine, 1996, 184, 2085-2090.	4.2	108
115	Spliced HERV-H endogenous retroviral sequences in human genomic DNA: Evidence for amplification via retrotransposition. Virology, 1995, 206, 164-173.	1.1	37
116	HERV-H Endogenous Retroviruses: Presence in the New World Branch but Amplification in the Old World Primate Lineage. Virology, 1995, 213, 395-404.	1.1	94
117	Carbohydrate Recognition by a Natural Killer Cell Receptor, Ly-49C. Journal of Biological Chemistry, 1995, 270, 9691-9694.	1.6	67
118	Expression of different members of the Ly-49 gene family defines distinct natural killer cell subsets and cell adhesion properties Journal of Experimental Medicine, 1994, 180, 2287-2295.	4.2	164
119	Endogenous Human Retroviruses. , 1994, , 465-535.		154
120	Recent Evolutionary Expansion of a Subfamily of RTVL-H Human Endogenous Retrovirus-like Elements. Virology, 1993, 196, 778-788.	1.1	84
121	Splicing of a human endogenous retrovirus to a novel phospholipase A2 related gene. Nucleic Acids Research, 1993, 21, 135-143.	6.5	88
122	Strategy for detecting cellular transcripts promoted by human endogenous long terminal repeats: Identification of a novel gene (CDC4L) with homology to yeast CDC4. Genomics, 1992, 13, 1237-1246.	1.3	69
123	A human endogenous long terminal repeat provides a polyadenylation signal to a novel, alternatively spliced transcript in normal placenta. Gene, 1992, 121, 287-294.	1.0	55
124	SV40 large T antigen trans-activates the long terminal repeats of a large family of human endogenous retrovirus-like sequences. Virology, 1992, 187, 242-250.	1.1	14
125	Functional heterogeneity of a large family of human LTR-like promoters and enhancers. Nucleic Acids Research, 1990, 18, 1261-1270.	6.5	61
126	A human gene related to the ribosomal protein L23 gene ofHalobacterium marismortui. Nucleic Acids Research, 1990, 18, 5301-5301.	6.5	5

#	Article	IF	CITATIONS
127	Molecular analysis of deletions in the human \hat{l}^2 -globin gene cluster: Deletion junctions and locations of breakpoints. Genomics, 1990, 6, 226-237.	1.3	114
128	Polyadenylation function and sequence variability of the long terminal repeats of the human endogenous retrovirus-like family RTVL-H. Virology, 1989, 173, 591-599.	1.1	49
129	Chromosomal distribution of the RTVL-H family of human endogenous retrovirus-like sequences. Genomics, 1988, 2, 280-287.	1.3	29
130	A gene deletion ending within a complex array of repeated sequences 3' to the human beta-globin gene cluster Proceedings of the National Academy of Sciences of the United States of America, 1986, 83, 5194-5198.	3.3	144
131	A ChineseGγ+(AγÎβ)0thalassemia deletion: comparison to other deletions in the human β-globin gene cluster and sequence analysis of the breakpoints. Nucleic Acids Research, 1985, 13, 6559-6575.	6.5	94
132	Induction of clonogenic and erythroleukemic cells by different helper virus pseudotypes of Friend spleen focus-forming virus. Virology, 1985, 141, 337-341.	1.1	11
133	Identification of a retrovirus-like repetitive element in human DNA Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 7510-7514.	3.3	148
134	Clonal analysis of the late stages of erythroleukemia induced by two distinct strains of Friend leukemia virus Molecular and Cellular Biology, 1981, 1, 721-730.	1.1	30
135	Quantitative colony method for tumorigenic cells transformed by two distinct strains of Friend leukemia virus. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 1703-1707.	3.3	70
136	Colchicine resistant friend cells: Application to the study of actinomycin D induced erythroid differentiation. Journal of Cellular Physiology, 1980, 102, 63-70.	2.0	5
137	Phorbol ester tumor promoters block the transition from the early to the heme-dependent late program of friend cell differentiation. Journal of Cellular Physiology, 1980, 105, 519-526.	2.0	10
138	Friend leukaemia virus-transformed cells, unlike normal stem cells, form spleen colonies in SI/SId mice. Nature, 1980, 288, 592-594.	13.7	54
139	The role of Heme in the regulation of the late program of friend cell erythroid differentiation. Journal of Cellular Physiology, 1979, 100, 467-479.	2.0	26
140	Growth in high-K+ medium induces friend cell differentiation. Developmental Biology, 1979, 70, 268-273.	0.9	14
141	Early transport changes during erythroid differentiation of friend leukemic cells. Journal of Cellular Physiology, 1978, 94, 275-285.	2.0	80
142	The program of friend cell erythroid differentiation: Early changes in Na+/K+ ATPase function. Journal of Supramolecular Structure, 1978, 8, 431-438.	2.3	40