Weiwei Cai

List of Publications by Citations

Source: https://exaly.com/author-pdf/5245951/weiwei-cai-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

15	10,055	7	17
papers	citations	h-index	g-index
17	10,878 ext. citations	10.4	5.12
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
15	Large-area synthesis of high-quality and uniform graphene films on copper foils. <i>Science</i> , 2009 , 324, 13	1 2 -43	8900
14	Oxidation resistance of graphene-coated Cu and Cu/Ni alloy. ACS Nano, 2011, 5, 1321-7	16.7	1007
13	Study on the diffusion mechanism of graphene grown on copper pockets. <i>Small</i> , 2015 , 11, 1418-22	11	43
12	Interlayer coupling of a direct van der Waals epitaxial MoS2/graphene heterostructure. <i>RSC Advances</i> , 2016 , 6, 323-330	3.7	35
11	Temperature-Related Morphological Evolution of MoS Domains on Graphene and Electron Transfer within Heterostructures. <i>Small</i> , 2017 , 13, 1603549	11	17
10	Polycrystalline Few-Layer Graphene as a Durable Anticorrosion Film for Copper. <i>Nano Letters</i> , 2021 , 21, 1161-1168	11.5	16
9	Centimeter-Scale Nearly Single-Crystal Monolayer MoS2 via Self-Limiting Vapor Deposition Epitaxy. Journal of Physical Chemistry C, 2017 , 121, 4703-4707	3.8	10
8	Syntheses and bandgap alterations of MoS2 induced by stresses in graphene-platinum substrates. <i>Carbon</i> , 2018 , 131, 26-30	10.4	7
7	Thickness-Independent Energy Dissipation in Graphene Electronics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 17706-17712	9.5	5
6	Critical Annealing Temperature for Stacking Orientation of Bilayer Graphene. Small, 2018, 14, e180249	811	4
5	Native Oxide Seeded Spontaneous Integration of Dielectrics on Exfoliated Black Phosphorus. <i>ACS Applied Materials & Dielectrics on Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics on Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics on Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics on Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics on Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics on Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics on Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics On Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics On Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics On Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics On Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics On Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics On Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics On Exfoliated Black Phosphorus ACS Applied Materials & Dielectrics Action </i>	9.5	2
4	In situ Raman probing of hot-electron transfer at Au-graphene interfaces with atomic layer accuracy. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	2
3	Anisotropic in-plane thermal conductivity for multi-layer WTe2. <i>Nano Research</i> ,1	10	2
2	Controlled growth of MoS via surface-energy alterations. <i>Nanotechnology</i> , 2020 , 31, 035601	3.4	1
1	Vertically Oriented Graphene for the Fluorescence Quenching Raman Spectra of Aromatic Dyes. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 14891-14896	3.8	1