Ole Kiehn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5245732/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Vulnerable Interneuron Subtypes in 15q13.3 Microdeletion Syndrome Using Single-Cell Transcriptomics. Biological Psychiatry, 2022, 91, 727-739.	0.7	12
2	Targeted activation of midbrain neurons restores locomotor function in mouse models of parkinsonism. Nature Communications, 2022, 13, 504.	5.8	32
3	Brainstem Circuits for Locomotion. Annual Review of Neuroscience, 2022, 45, 63-85.	5.0	49
4	Differential Contribution of VO Interneurons to Execution of Rhythmic and Nonrhythmic Motor Behaviors. Journal of Neuroscience, 2021, 41, 3432-3445.	1.7	15
5	Distinct subtypes of proprioceptive dorsal root ganglion neurons regulate adaptive proprioception in mice. Nature Communications, 2021, 12, 1026.	5.8	54
6	Locomotor deficits in a mouse model of ALS are paralleled by loss of V1-interneuron connections onto fast motor neurons. Nature Communications, 2021, 12, 3251.	5.8	38
7	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	7.1	183
8	Brainstem neurons that command mammalian locomotor asymmetries. Nature Neuroscience, 2020, 23, 730-740.	7.1	103
9	Early delivery and prolonged treatment with nimodipine prevents the development of spasticity after spinal cord injury in mice. Science Translational Medicine, 2020, 12, .	5.8	25
10	Modeling Motor Neuron Resilience in ALS Using Stem Cells. Stem Cell Reports, 2019, 12, 1329-1341.	2.3	28
11	Muscle-selective RUNX3 dependence of sensorimotor circuit development. Development (Cambridge), 2019, 146, .	1.2	15
12	Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nature Neuroscience, 2018, 21, 869-880.	7.1	327
13	Ca2+-binding protein NECAB2 facilitates inflammatory pain hypersensitivity. Journal of Clinical Investigation, 2018, 128, 3757-3768.	3.9	15
14	Sacral Spinal Cord Transection and Isolated Sacral Cord Preparation to Study Chronic Spinal Cord Injury in Adult Mice. Bio-protocol, 2018, 8, e2784.	0.2	10
15	Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse. Scientific Reports, 2017, 7, 41369.	1.6	74
16	Spatiotemporal correlation of spinal network dynamics underlying spasms in chronic spinalized mice. ELife, 2017, 6, .	2.8	54
17	Decoding the organization of spinal circuits that control locomotion. Nature Reviews Neuroscience, 2016, 17, 224-238.	4.9	598
18	Phenotypic Characterization of Speed-Associated Gait Changes in Mice Reveals Modular Organization of Locomotor Networks. Current Biology, 2015, 25, 1426-1436.	1.8	197

Ole Kiehn

#	Article	IF	CITATIONS
19	Editorial overview: Motor circuits and action. Current Opinion in Neurobiology, 2015, 33, v-vi.	2.0	Ο
20	Organization of left–right coordination of neuronal activity in the mammalian spinal cord: Insights from computational modelling. Journal of Physiology, 2015, 593, 2403-2426.	1.3	73
21	Descending Command Neurons in the Brainstem that Halt Locomotion. Cell, 2015, 163, 1191-1203.	13.5	214
22	The retrotrapezoid nucleus neurons expressing Atoh1 and Phox2b are essential for the respiratory response to CO2. ELife, 2015, 4, .	2.8	83
23	Spinal Clutamatergic Neurons Defined by EphA4 Signaling Are Essential Components of Normal Locomotor Circuits. Journal of Neuroscience, 2014, 34, 3841-3853.	1.7	51
24	Dual-mode operation of neuronal networks involved in left–right alternation. Nature, 2013, 500, 85-88.	13.7	313
25	Locomotor Rhythm Generation Linked to the Output of Spinal Shox2 Excitatory Interneurons. Neuron, 2013, 80, 920-933.	3.8	189
26	Optogenetic dissection reveals multiple rhythmogenic modules underlying locomotion. Proceedings of the United States of America, 2013, 110, 11589-11594.	3.3	166
27	Development and functional organization of spinal locomotor circuits. Current Opinion in Neurobiology, 2011, 21, 100-109.	2.0	233
28	Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nature Neuroscience, 2010, 13, 246-252.	7.1	246
29	A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons. Molecular and Cellular Neurosciences, 2010, 45, 245-257.	1.0	87
30	Probing spinal circuits controlling walking in mammals. Biochemical and Biophysical Research Communications, 2010, 396, 11-18.	1.0	48
31	Transmitterâ€phenotypes of commissural interneurons in the lumbar spinal cord of newborn mice. Journal of Comparative Neurology, 2009, 517, 177-192.	0.9	49
32	Excitatory components of the mammalian locomotor CPG. Brain Research Reviews, 2008, 57, 56-63.	9.1	64
33	Genetic Ablation of V2a Ipsilateral Interneurons Disrupts Left-Right Locomotor Coordination in Mammalian Spinal Cord. Neuron, 2008, 60, 70-83.	3.8	335
34	Segmental, Synaptic Actions of Commissural Interneurons in the Mouse Spinal Cord. Journal of Neuroscience, 2007, 27, 6521-6530.	1.7	115
35	Phenotype of V2â€derived interneurons and their relationship to the axon guidance molecule EphA4 in the developing mouse spinal cord. European Journal of Neuroscience, 2007, 26, 2989-3002.	1.2	145
36	LOCOMOTOR CIRCUITS IN THE MAMMALIAN SPINAL CORD. Annual Review of Neuroscience, 2006, 29, 279-306.	5.0	751

Ole Kiehn

#	Article	IF	CITATIONS
37	V1 spinal neurons regulate the speed of vertebrate locomotor outputs. Nature, 2006, 440, 215-219.	13.7	348
38	Mammalian motor neurons corelease glutamate and acetylcholine at central synapses. Proceedings of the United States of America, 2005, 102, 5245-5249.	3.3	227
39	Central Pattern Generators Deciphered by Molecular Genetics. Neuron, 2004, 41, 317-321.	3.8	102
40	Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Progress in Neurobiology, 2003, 70, 347-361.	2.8	196
41	Functional Identification of Interneurons Responsible for Left-Right Coordination of Hindlimbs in Mammals. Neuron, 2003, 38, 953-963.	3.8	200
42	Gap junctions and motor behavior. Trends in Neurosciences, 2002, 25, 108-115.	4.2	106
43	Functional role of plateau potentials in vertebrate motor neurons. Current Opinion in Neurobiology, 1998, 8, 746-752.	2.0	174
44	Crossed Rhythmic Synaptic Input to Motoneurons during Selective Activation of the Contralateral Spinal Locomotor Network. Journal of Neuroscience, 1997, 17, 9433-9447.	1.7	109
45	Distribution of Networks Generating and Coordinating Locomotor Activity in the Neonatal Rat Spinal Cord <i>In Vitro</i> : A Lesion Study, Journal of Neuroscience, 1996, 16, 5777-5794.	1.7	481