Warren E Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5245592/publications.pdf Version: 2024-02-01

		29994	19136
146	16,677	54	118
papers	citations	h-index	g-index
151	151	151	16361
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 2014, 346, 1320-1331.	6.0	1,583
2	Molecular phylogenetics and the origins of placental mammals. Nature, 2001, 409, 614-618.	13.7	1,292
3	Towards complete and error-free genome assemblies of all vertebrate species. Nature, 2021, 592, 737-746.	13.7	1,139
4	A Molecular Phylogeny of Living Primates. PLoS Genetics, 2011, 7, e1001342.	1.5	1,130
5	Comparative genomics reveals insights into avian genome evolution and adaptation. Science, 2014, 346, 1311-1320.	6.0	895
6	Earth BioGenome Project: Sequencing life for the future of life. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4325-4333.	3.3	652
7	The Late Miocene Radiation of Modern Felidae: A Genetic Assessment. Science, 2006, 311, 73-77.	6.0	596
8	Genome 10K: A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species. Journal of Heredity, 2009, 100, 659-674.	1.0	504
9	Genetic Restoration of the Florida Panther. Science, 2010, 329, 1641-1645.	6.0	467
10	The Near Eastern Origin of Cat Domestication. Science, 2007, 317, 519-523.	6.0	414
11	Initial sequence and comparative analysis of the cat genome. Genome Research, 2007, 17, 1675-1689.	2.4	311
12	The adaptive evolution of the mammalian mitochondrial genome. BMC Genomics, 2008, 9, 119.	1.2	303
13	Molecular Genetics and Evolution of Melanism in the Cat Family. Current Biology, 2003, 13, 448-453.	1.8	274
14	Genomic ancestry of the American puma (Puma concolor). , 2000, 91, 186-197.		240
15	The tiger genome and comparative analysis with lion and snow leopard genomes. Nature Communications, 2013, 4, 2433.	5.8	217
16	Pattern and timing of diversification of the mammalian order Carnivora inferred from multiple nuclear gene sequences. Molecular Phylogenetics and Evolution, 2010, 56, 49-63.	1.2	206
17	Biogeographic variation of food habits and body size of the America puma. Oecologia, 1990, 85, 185-190.	0.9	199
18	Phylogeography and Genetic Ancestry of Tigers (Panthera tigris). PLoS Biology, 2004, 2, e442.	2.6	197

3.5

89

#	Article	IF	CITATIONS
19	Phylogenetic reconstruction of the felidae using 16S rRNA and NADH-5 mitochondrial genes. Journal of Molecular Evolution, 1997, 44, S98-S116.	0.8	182
20	Phylogeography, population history and conservation genetics of jaguars (Panthera onca, Mammalia,) Tj ETQqO	0 0 rgBT /0 2.9	Dverlgck 10 T
21	Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Molecular Ecology, 2002, 11, 2171-2182.	2.0	172
22	Phylogenetics, genome diversity and origin of modern leopard,Panthera pardus. Molecular Ecology, 2001, 10, 2617-2633.	2.0	168
23	Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biology, 2015, 16, 277.	3.8	167
24	Genome-wide Evidence Reveals that African and Eurasian Golden Jackals Are Distinct Species. Current Biology, 2015, 25, 2158-2165.	1.8	156
25	Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Molecular Biology and Evolution, 1997, 14, 277-286.	3.5	136
26	Seroprevalence and Genomic Divergence of Circulating Strains of Feline Immunodeficiency Virus among Felidae and Hyaenidae Species. Journal of Virology, 2005, 79, 8282-8294.	1.5	132
27	Patterns of Genetic Diversity in Remaining Giant Panda Populations. Conservation Biology, 2001, 15, 1596-1607.	2.4	128
28	The Earth BioGenome Project 2020: Starting the clock. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	124
29	Ecology of the Patagonia puma Felis concolor patagonica in southern Chile. Biological Conservation, 1999, 90, 33-40.	1.9	106
30	Molecular Evidence for Species-Level Distinctions in Clouded Leopards. Current Biology, 2006, 16, 2371-2376.	1.8	98
31	Pangolin genomes and the evolution of mammalian scales and immunity. Genome Research, 2016, 26, 1312-1322.	2.4	95
32	The Evolutionary Dynamics of the Lion Panthera leo Revealed by Host and Viral Population Genomics. PLoS Genetics, 2008, 4, e1000251.	1.5	91

Spatial resource partitioning by sympatric grey fox (Dusicyon griseus) and culpeo fox (Dusicyon) Tj ETQq0 0 0 rgBT $_{0.4}^{/}$ Qverlock $_{84}^{10}$ Tf 50 6

Evolution of CRISPs Associated with Toxicoferan-Reptilian Venom and Mammalian Reproduction. Molecular Biology and Evolution, 2012, 29, 1807-1822.

Phylogeographic Patterns and Evolution of the Mitochondrial DNA Control Region in Two Neotropical Cats (Mammalia, Felidae). Journal of Molecular Evolution, 1998, 47, 613-624.

34

The Evolution Cats. Scientific American, 2007, 297, 68-75.

#	Article	IF	CITATIONS
37	Interâ€species hybridization among Neotropical cats of the genus <i>Leopardus</i> , and evidence for an introgressive hybrid zone between <i>L. geoffroyi</i> and <i>L. tigrinus</i> in southern Brazil. Molecular Ecology, 2008, 17, 4317-4333.	2.0	83
38	Role of Body Size in the Diets of Sympatric Gray and Culpeo Foxes. Journal of Mammalogy, 1994, 75, 163-174.	0.6	81
39	Evolutionary analysis of a large mtDNA translocation (numt) into the nuclear genome of the Panthera genus species. Gene, 2006, 366, 292-302.	1.0	79
40	State of cat genomics. Trends in Genetics, 2008, 24, 268-279.	2.9	79
41	Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida. Molecular Biology and Evolution, 2015, 32, 2832-2843.	3.5	73
42	Molecular evolution and the role of oxidative stress in the expansion and functional diversification of cytosolic glutathione transferases. BMC Evolutionary Biology, 2010, 10, 281.	3.2	71
43	The evolutionary history of extinct and living lions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 10927-10934.	3.3	70
44	Disparate phylogeographic patterns of molecular genetic variation in four closely related South American small cat species. Molecular Ecology, 1999, 8, S79-S94.	2.0	69
45	Phylogenetic and Phylogeographic Analysis of Iberian Lynx Populations. , 2004, 95, 19-28.		68
46	Improving Illumina assemblies with Hi and long reads: An example with the North African dromedary. Molecular Ecology Resources, 2019, 19, 1015-1026.	2.2	67
47	Feeding and Spatial Ecology of Felis geoffroyi in Southern Patagonia. Journal of Mammalogy, 1991, 72, 815-820.	0.6	66
48	Genetic and Morphological Divergence among Sympatric Canids. Journal of Heredity, 1989, 80, 447-454.	1.0	64
49	Mammalian keratin associated proteins (KRTAPs) subgenomes: disentangling hair diversity and adaptation to terrestrial and aquatic environments. BMC Genomics, 2014, 15, 779.	1.2	64
50	The Complete Phylogeny of Pangolins: Scaling Up Resources for the Molecular Tracing of the Most Trafficked Mammals on Earth. Journal of Heredity, 2018, 109, 347-359.	1.0	64
51	Patterns of molecular genetic variation among cat breeds. Genomics, 2008, 91, 1-11.	1.3	63
52	Evolution of feline immunodeficiency virus in Felidae: Implications for human health and wildlife ecology. Veterinary Immunology and Immunopathology, 2008, 123, 32-44.	0.5	62
53	Reproductive status of endemic felid species in Latin American zoos and implications for ex situ conservation. Zoo Biology, 2003, 22, 421-441.	0.5	60
54	Genetic Characterization of Feline Leukemia Virus from Florida Panthers. Emerging Infectious Diseases, 2008, 14, 252-259.	2.0	60

#	Article	IF	CITATIONS
55	Subspecies Genetic Assignments of Worldwide Captive Tigers Increase Conservation Value of Captive Populations. Current Biology, 2008, 18, 592-596.	1.8	59

56 A Comprehensive Whole-Genome Integrated Cytogenetic Map for the Alpaca<i> (Lama) Tj ETQq0 0 0 orgBT /Ovgflock 10 T

57	Ecological and biogeographical inferences on two sympatric and enigmatic Andean cat species using genetic identification of faecal samples. Molecular Ecology, 2008, 17, 678-690.	2.0	58
58	Gene loss, adaptive evolution and the co-evolution of plumage coloration genes with opsins in birds. BMC Genomics, 2015, 16, 751.	1.2	58
59	Sympatric Asian felid phylogeography reveals a major Indochinese–Sundaic divergence. Molecular Ecology, 2014, 23, 2072-2092.	2.0	56
60	Darwin's Fox: A Distinct Endangered Species in a Vanishing Habitat. Conservation Biology, 1996, 10, 366-375.	2.4	55
61	Pleistocene and ecological effects on continentalâ€scale genetic differentiation in the bobcat (<i>Lynx) Tj ETQq1</i>	1 0,7843 2.0	14 ₅ gBT /O
62	Puma genomes from North and South America provide insights into the genomic consequences of inbreeding. Nature Communications, 2019, 10, 4769.	5.8	55
63	FIV cross-species transmission: An evolutionary prospective. Veterinary Immunology and Immunopathology, 2008, 123, 159-166.	0.5	51
64	Tissue sampling methods and standards for vertebrate genomics. GigaScience, 2012, 1, 8.	3.3	51
65	How the Leopard Hides Its Spots: ASIP Mutations and Melanism in Wild Cats. PLoS ONE, 2012, 7, e50386.	1.1	51

66 Eighteen polymorphic microsatellite markers for the highly endangered Spanish imperial eagle (Aquila) Tj ETQq0 0 Q ggBT /Overlock 10 T

67

#	Article	IF	CITATIONS
73	Phylogenetic reconstruction of South American felids defined by protein electrophoresis. Journal of Molecular Evolution, 1994, 39, 296-305.	0.8	43
74	Intentional genetic introgression influences survival of adults and subadults in a small, inbred felid population. Journal of Animal Ecology, 2011, 80, 958-967.	1.3	43
75	Incomplete lineage sorting and phenotypic evolution in marsupials. Cell, 2022, 185, 1646-1660.e18.	13.5	43
76	Aqueous-Phase Disappearance of Atrazine, Metolachlor, and Chlorpyrifos in Laboratory Aquaria and Outdoor Macrocosms. Archives of Environmental Contamination and Toxicology, 2003, 44, 67-76.	2.1	42
77	Resolution of recent radiations within three evolutionary lineages of felidae using mitochondrial restriction fragment length polymorphism variation. Journal of Mammalian Evolution, 1996, 3, 97-120.	1.0	41
78	Analyses of Sweet Receptor Gene (Tas1r2) and Preference for Sweet Stimuli in Species of Carnivora. Journal of Heredity, 2009, 100, S90-S100.	1.0	41
79	The influence of the arid <scp>A</scp> ndean high plateau on the phylogeography and population genetics of guanaco (<i><scp>L</scp>ama guanicoe</i>) in <scp>S</scp> outh <scp>A</scp> merica. Molecular Ecology, 2013, 22, 463-482.	2.0	39
80	Evolution of gene regulation in ruminants differs between evolutionary breakpoint regions and homologous synteny blocks. Genome Research, 2019, 29, 576-589.	2.4	39
81	The coming of age of conservation genetics in Latin America: what has been achieved and what needs to be done. Conservation Genetics, 2018, 19, 1-15.	0.8	38
82	Exposure to disease agents in the endangered Iberian lynx (Lynx pardinus). European Journal of Wildlife Research, 2008, 54, 171-178.	0.7	37
83	What Is a Tiger? Genetics and Phylogeography. , 2010, , 35-51.		37
84	Genetic introgression and the survival of Florida panther kittens. Biological Conservation, 2010, 143, 2789-2796.	1.9	37
85	Predicting Early Mortality of Newborn Guanacos by Birth Mass and Hematological Parameters: A Provisional Model. Journal of Wildlife Management, 1998, 62, 24.	0.7	36
86	MULTIPLE PATERNITY AND REPRODUCTIVE TACTICS OF FREE-RANGING AMERICAN MINKS, MUSTELA VISON. Journal of Mammalogy, 2004, 85, 432-439.	0.6	36
87	Development and Application of Camelid Molecular Cytogenetic Tools. Journal of Heredity, 2014, 105, 952-963.	1.0	36
88	Genomic Adaptations and Evolutionary History of the Extinct Scimitar-Toothed Cat, Homotherium latidens. Current Biology, 2020, 30, 5018-5025.e5.	1.8	34
89	Molecular Genetic Insights on Cheetah (Acinonyx jubatus) Ecology and Conservation in Namibia. Journal of Heredity, 2008, 99, 2-13.	1.0	33
90	Standards recommendations for the Earth BioGenome Project. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	33

#	Article	IF	CITATIONS
91	Phylogeography and population history of Leopardus guigna, the smallest American felid. Conservation Genetics, 2014, 15, 631-653.	0.8	31
92	Genetic Variation in Coat Colour Genes MC1R and ASIP Provides Insights Into Domestication and Management of South American Camelids. Frontiers in Genetics, 2018, 9, 487.	1.1	31
93	The mammalian fauna of the northern Chilean Patagonia: a biogeographical dilemma. Mammalia, 1990, 54, .	0.3	30
94	Life on the Edge: The Long-Term Persistence and Contrasting Spatial Genetic Structure of Distinct Brown Trout Life Histories at Their Ecological Limits. Journal of Heredity, 2006, 97, 193-205.	1.0	30
95	Mitochondrial Introgressions into the Nuclear Genome of the Domestic Cat. Journal of Heredity, 2007, 98, 414-420.	1.0	30
96	rPatterns of mtDNA and microsatellite variation in an island and mainland population of guanacos in southern Chile. Animal Conservation, 2001, 4, 93-101.	1.5	28
97	Conservation Genetics of the Cheetah: Lessons Learned and New Opportunities. Journal of Heredity, 2017, 108, 671-677.	1.0	28
98	Evolutionary Genomics and Adaptive Evolution of the Hedgehog Gene Family (Shh, Ihh and Dhh) in Vertebrates. PLoS ONE, 2014, 9, e74132.	1.1	27
99	Landscape genomics: natural selection drives the evolution of mitogenome in penguins. BMC Genomics, 2018, 19, 53.	1.2	27
100	Development of Y Chromosome Intraspecific Polymorphic Markers in the Felidae. Journal of Heredity, 2007, 98, 400-413.	1.0	26
101	The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection Revealing a Host–Pathogen Arms Race in Birds. Diversity, 2019, 11, 131.	0.7	25
102	The Genetic Inheritance of the Blue-eyed White Phenotype in Alpacas (<i>Vicugna pacos</i>). Journal of Heredity, 2014, 105, 941-951.	1.0	24
103	Reduced Genetic Diversity and Increased Dispersal in Guigna (<i>Leopardus guigna</i>) in Chilean Fragmented Landscapes. Journal of Heredity, 2015, 106, 522-536.	1.0	24
104	Adaptive genomic evolution of opsins reveals that early mammals flourished in nocturnal environments. BMC Genomics, 2018, 19, 121.	1.2	22
105	The Role of Gene Duplication and Unconstrained Selective Pressures in the Melanopsin Gene Family Evolution and Vertebrate Circadian Rhythm Regulation. PLoS ONE, 2012, 7, e52413.	1.1	22
106	Phylogeography and subspecies assessment of vicuñas in Chile and Bolivia utilizing mtDNA and microsatellite markers: implications for vicuña conservation and management. Conservation Genetics, 2004, 5, 89-102.	0.8	20
107	Evolution of the Male-Determining Gene SRY Within the Cat Family Felidae. Genetics, 2007, 175, 1855-1867.	1.2	20
108	Whole-Genome Identification, Phylogeny, and Evolution of the Cytochrome P450 Family 2 (CYP2) Subfamilies in Birds. Genome Biology and Evolution, 2016, 8, 1115-1131.	1.1	20

#	Article	IF	CITATIONS
109	Adaptive evolution of the matrix extracellular phosphoglycoprotein in mammals. BMC Evolutionary Biology, 2011, 11, 342.	3.2	18
110	Genetic diversity of Rhizobium from nodulating beans grown in a variety of Mediterranean climate soils of Chile. Archives of Microbiology, 2015, 197, 419-429.	1.0	18
111	Continued decline in genetic diversity among wild cheetahs (Acinonyx jubatus) without further loss of semen quality. Biological Conservation, 2016, 200, 192-199.	1.9	18
112	Whole Genome Sequencing and Re-sequencing of the Sable Antelope (<i>Hippotragus niger</i>): A Resource for Monitoring Diversity in <i>ex Situ</i> and <i>in Situ</i> Populations. G3: Genes, Genomes, Genetics, 2019, 9, 1785-1793.	0.8	18
113	Detecting the vanishing populations of the highly endangered Darwin's fox, Pseudalopex fulvipes. Animal Conservation, 2004, 7, 147-153.	1.5	16
114	A select panel of polymorphic microsatellite loci for individual identification of snow leopards (Panthera uncia). Molecular Ecology Notes, 2007, 7, 311-314.	1.7	16
115	Molecular evidence for a recent demographic expansion in the puma (Puma concolor) (Mammalia,) Tj ETQq1 1 0.	784314 rg 0.6	gBT /Overlact
116	Molecular assessment of the phylogeny and biogeography of a recently diversified endemic group of South American canids (Mammalia: Carnivora: Canidae). Genetics and Molecular Biology, 2016, 39, 442-451.	0.6	16
117	Isolation and characterization of microsatellite markers in pangolins (Mammalia,) Tj ETQq1 1 0.784314 rgBT /Ove	erlock 10 1 1.7	Ff 50 422 Td
118	The Role of Genomics in Conservation and Reproductive Sciences. Advances in Experimental Medicine and Biology, 2014, 753, 71-96.	0.8	14
119	Crossâ€species transmission of retroviruses among domestic and wild felids in humanâ€occupied landscapes in Chile. Evolutionary Applications, 2021, 14, 1070-1082.	1.5	13
120	Applying molecular genetic tools to tiger conservation. Integrative Zoology, 2010, 5, 351-362.	1.3	12
121	Does genetic introgression improve female reproductive performance? A test on the endangered Florida panther. Oecologia, 2012, 168, 289-300.	0.9	12
122	Bone-associated gene evolution and the origin of flight in birds. BMC Genomics, 2016, 17, 371.	1.2	12
123	Avian Binocularity and Adaptation to Nocturnal Environments: Genomic Insights from a Highly Derived Visual Phenotype. Genome Biology and Evolution, 2019, 11, 2244-2255.	1.1	12
124	Utility of genetic variation in coat color genes to distinguish wild, domestic and hybrid South American camelids for forensic and judicial applications. Forensic Science International: Genetics, 2020, 45, 102226.	1.6	12
125	Fish Lateral Line Innovation: Insights into the Evolutionary Genomic Dynamics of a Unique Mechanosensory Organ. Molecular Biology and Evolution, 2012, 29, 3887-3898.	3.5	11
126	Maintenance of Genetic Diversity in an Introduced Island Population of Guanacos after Seven Decades and Two Severe Demographic Bottlenecks: Implications for Camelid Conservation. PLoS ONE, 2014, 9, e91714.	1.1	11

#	Article	IF	CITATIONS
127	Conservation Genetics of the Cheetah: Genetic History and Implications for Conservation. , 2018, , 71-92.		10
128	Molecular genetic evidence for social group disruption of wild vicuñas Vicugna vicugna captured for wool harvest in Chile. Small Ruminant Research, 2009, 84, 28-34.	0.6	9
129	Positive Selection Linked with Generation of Novel Mammalian Dentition Patterns. Genome Biology and Evolution, 2016, 8, 2748-2759.	1.1	9
130	Crossâ€∎mplification and characterization of 13 tetranucleotide microsatellites in multiple species of Neotropical canids. Molecular Ecology Resources, 2008, 8, 898-900.	2.2	8
131	The dynamic proliferation of CanSINEs mirrors the complex evolution of Feliforms. BMC Evolutionary Biology, 2014, 14, 137.	3.2	8
132	Molecular Genetic Characterization of Two Insular Asian Cat Species, Bornean Bay Cat and Iriomote Cat. , 1999, , 223-248.		8
133	Subspecific Status of the Korean Tiger Inferred by Ancient DNA Analysis. Animal Systematics, Evolution and Diversity, 2012, 28, 48-53.	0.2	8
134	Resource Acquisition in the Presence of Novelty by Coyotes of Different Rank. Journal of Wildlife Management, 1990, 54, 582.	0.7	6
135	Finding of polydactyly in a free-ranging guanaco (Lama guanicoe). Small Ruminant Research, 2008, 76, 220-222.	0.6	6
136	Past and Recent Effects of Livestock Activity on the Genetic Diversity and Population Structure of Native Guanaco Populations of Arid Patagonia. Animals, 2021, 11, 1218.	1.0	6
137	Phylogenetic relationships and genetic diversity of badgers from the Korean Peninsula: Implications for the taxonomic status of the Korean badger. Biochemical Systematics and Ecology, 2016, 69, 18-26.	0.6	5
138	PGD: a pangolin genome hub for the research community. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw063.	1.4	5
139	Interbreeding among South American camelids threatens species integrity. Journal of Arid Environments, 2020, 181, 104249.	1.2	5
140	Genetic diversity and population structure of the Black-faced Spoonbill (Platalea minor) among its breeding sites in South Korea: Implication for conservation. Biochemical Systematics and Ecology, 2017, 71, 106-113.	0.6	3
141	Assessing patterns of genetic diversity and connectivity among guanacos (<i>Lama guanicoe</i>) in the Bolivian Chaco: implications for designing management strategies. Studies on Neotropical Fauna and Environment, 2023, 58, 94-103.	0.5	3
142	Genomic Signatures of Divergent Ecological Strategies in a Recent Radiation of Neotropical Wild Cats. Molecular Biology and Evolution, 2022, 39, .	3.5	3
143	Response to Comment by Faurby, Werdelin and Svenning. Genome Biology, 2016, 17, 90.	3.8	2
144	The mammalian fauna of the Northern Chilean Patagonia : a biogeographical dilemma. Mammalia, 1992, 56, .	0.3	1

#	Article	IF	CITATIONS
145	Genetic Future for Florida Panthers—Response. Science, 2010, 330, 1744-1744.	6.0	1
146	Camelid Genetics and Reproductive Biotechnologies. Journal of Heredity, 2014, 105, 931-932.	1.0	0