Mark E Cooper

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5245322/publications.pdf

Version: 2024-02-01

403 papers 56,246 citations

106 h-index 228 g-index

412 all docs

412 docs citations

times ranked

412

41067 citing authors

#	Article	IF	CITATIONS
1	Effects of Losartan on Renal and Cardiovascular Outcomes in Patients with Type 2 Diabetes and Nephropathy. New England Journal of Medicine, 2001, 345, 861-869.	13.9	6,609
2	Intensive Blood Glucose Control and Vascular Outcomes in Patients with Type 2 Diabetes. New England Journal of Medicine, 2008, 358, 2560-2572.	13.9	6,447
3	A Trial of Darbepoetin Alfa in Type 2 Diabetes and Chronic Kidney Disease. New England Journal of Medicine, 2009, 361, 2019-2032.	13.9	2,110
4	Mechanisms of Diabetic Complications. Physiological Reviews, 2013, 93, 137-188.	13.1	1,943
5	Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet, The, 2014, 383, 1068-1083.	6.3	1,230
6	Oxidative Stress as a Major Culprit in Kidney Disease in Diabetes. Diabetes, 2008, 57, 1446-1454.	0.3	999
7	Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. Journal of Experimental Medicine, 2008, 205, 2409-2417.	4.2	931
8	Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: Lessons from RENAAL. Kidney International, 2004, 65, 2309-2320.	2.6	842
9	The Role of Advanced Glycation End Products in Progression and Complications of Diabetes. Journal of Clinical Endocrinology and Metabolism, 2008, 93, 1143-1152.	1.8	839
10	Albuminuria and Kidney Function Independently Predict Cardiovascular and Renal Outcomes in Diabetes. Journal of the American Society of Nephrology: JASN, 2009, 20, 1813-1821.	3.0	787
11	Albuminuria, a Therapeutic Target for Cardiovascular Protection in Type 2 Diabetic Patients With Nephropathy. Circulation, 2004, 110, 921-927.	1.6	679
12	Reduced Bone Mass in Daughters of Women with Osteoporosis. New England Journal of Medicine, 1989, 320, 554-558.	13.9	585
13	The tubulointerstitium in progressive diabetic kidney disease: More than an aftermath of glomerular injury?. Kidney International, 1999, 56, 1627-1637.	2.6	566
14	Diabetic kidney disease. Nature Reviews Disease Primers, 2015, 1, 15018.	18.1	542
15	Pathogenesis, prevention, and treatment of diabetic nephropathy. Lancet, The, 1998, 352, 213-219.	6.3	476
16	Hyperglycemia Induces a Dynamic Cooperativity of Histone Methylase and Demethylase Enzymes Associated With Gene-Activating Epigenetic Marks That Coexist on the Lysine Tail. Diabetes, 2009, 58, 1229-1236.	0.3	468
17	Suppression of microRNA-29 Expression by TGF-Î ² 1 Promotes Collagen Expression and Renal Fibrosis. Journal of the American Society of Nephrology: JASN, 2012, 23, 252-265.	3.0	450
18	Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nature Reviews Nephrology, 2016, 12, 73-81.	4.1	441

#	Article	IF	CITATIONS
19	Methylglyoxal modification of Nav1.8 facilitates nociceptive neuron firing and causes hyperalgesia in diabetic neuropathy. Nature Medicine, 2012, 18, 926-933.	15.2	414
20	Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxidants and Redox Signaling, 2016, 25, 657-684.	2.5	410
21	A Breaker of Advanced Glycation End Products Attenuates Diabetes-Induced Myocardial Structural Changes. Circulation Research, 2003, 92, 785-792.	2.0	401
22	Advanced glycation end products cause epithelial-myofibroblast transdifferentiation via the receptor for advanced glycation end products (RAGE). Journal of Clinical Investigation, 2001, 108, 1853-1863.	3.9	397
23	RAGE-Induced Cytosolic ROS Promote Mitochondrial Superoxide Generation in Diabetes. Journal of the American Society of Nephrology: JASN, 2009, 20, 742-752.	3.0	391
24	Myocardial infarction increases ACE2 expression in rat and humans. European Heart Journal, 2005, 26, 369-375.	1.0	382
25	Receptor for Advanced Glycation End Products (RAGE) Deficiency Attenuates the Development of Atherosclerosis in Diabetes. Diabetes, 2008, 57, 2461-2469.	0.3	376
26	NADPH Oxidase 1 Plays a Key Role in Diabetes Mellitus–Accelerated Atherosclerosis. Circulation, 2013, 127, 1888-1902.	1.6	325
27	Characterization of Renal Angiotensin-Converting Enzyme 2 in Diabetic Nephropathy. Hypertension, 2003, 41, 392-397.	1.3	323
28	AGE, RAGE, and ROS in Diabetic Nephropathy. Seminars in Nephrology, 2007, 27, 130-143.	0.6	319
29	Inhibition of NADPH Oxidase Prevents Advanced Glycation End Product–Mediated Damage in Diabetic Nephropathy Through a Protein Kinase C-α–Dependent Pathway. Diabetes, 2008, 57, 460-469.	0.3	317
30	Salt Induces Myocardial and Renal Fibrosis in Normotensive and Hypertensive Rats. Circulation, 1998, 98, 2621-2628.	1.6	313
31	miR-200a Prevents Renal Fibrogenesis Through Repression of TGF- \hat{I}^2 2 Expression. Diabetes, 2011, 60, 280-287.	0.3	311
32	Genetic Targeting or Pharmacologic Inhibition of NADPH Oxidase Nox4 Provides Renoprotection in Long-Term Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2014, 25, 1237-1254.	3.0	301
33	ACE2, a new regulator of the renin–angiotensin system. Trends in Endocrinology and Metabolism, 2004, 15, 166-169.	3.1	292
34	Advanced Glycation End Product Interventions Reduce Diabetes-Accelerated Atherosclerosis. Diabetes, 2004, 53, 1813-1823.	0.3	291
35	Role of Advanced Glycation End Products in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2003, 14, S254-S258.	3.0	290
36	Therapies for hyperglycaemia-induced diabetic complications: from animal models to clinical trials. Nature Reviews Drug Discovery, 2009, 8, 417-430.	21.5	285

#	Article	lF	CITATIONS
37	An acute fall in estimated glomerular filtration rate during treatment with losartan predicts a slower decrease in long-term renal function. Kidney International, 2011, 80, 282-287.	2.6	282
38	Albuminuria Is a Target for Renoprotective Therapy Independent from Blood Pressure in Patients with Type 2 Diabetic Nephropathy: Post Hoc Analysis from the Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan (RENAAL) Trial. Journal of the American Society of Nephrology: JASN, 2007, 18, 1540-1546.	3.0	280
39	Prevention of Accelerated Atherosclerosis by Angiotensin-Converting Enzyme Inhibition in Diabetic Apolipoprotein E–Deficient Mice. Circulation, 2002, 106, 246-253.	1.6	266
40	Why blockade of the renin–angiotensin system reduces the incidence of new-onset diabetes. Journal of Hypertension, 2005, 23, 463-473.	0.3	259
41	Intensive glucose control improves kidney outcomes in patients with type 2 diabetes. Kidney International, 2013, 83, 517-523.	2.6	256
42	Improved Islet Morphology after Blockade of the Renin-Angiotensin System in the ZDF Rat. Diabetes, 2004, 53, 989-997.	0.3	254
43	Linagliptin Lowers Albuminuria on Top of Recommended Standard Treatment in Patients With Type 2 Diabetes and Renal Dysfunction. Diabetes Care, 2013, 36, 3460-3468.	4.3	253
44	The breakdown of preâ€existing advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes. FASEB Journal, 2003, 17, 1762-1764.	0.2	252
45	Reduction of the Accumulation of Advanced Glycation End Products by ACE Inhibition in Experimental Diabetic Nephropathy. Diabetes, 2002, 51, 3274-3282.	0.3	252
46	Lowering Blood Pressure Reduces Renal Events in Type 2 Diabetes. Journal of the American Society of Nephrology: JASN, 2009, 20, 883-892.	3.0	245
47	Advanced glycation end products activate Smad signaling via TGFâ€Î²â€dependent and â€independent mechanisms: implications for diabetic renal and vascular disease. FASEB Journal, 2004, 18, 176-178.	0.2	241
48	Connective Tissue Growth Factor Plays an Important Role in Advanced Glycation End Product–Induced Tubular Epithelial-to-Mesenchymal Transition: Implications for Diabetic Renal Disease. Journal of the American Society of Nephrology: JASN, 2006, 17, 2484-2494.	3.0	238
49	E-Cadherin Expression Is Regulated by miR-192/215 by a Mechanism That Is Independent of the Profibrotic Effects of Transforming Growth Factor-Î ² . Diabetes, 2010, 59, 1794-1802.	0.3	235
50	Lack of the Antioxidant Enzyme Glutathione Peroxidase-1 Accelerates Atherosclerosis in Diabetic Apolipoprotein E–Deficient Mice. Circulation, 2007, 115, 2178-2187.	1.6	233
51	UKPDS and the Legacy Effect. New England Journal of Medicine, 2008, 359, 1618-1620.	13.9	221
52	Diabetic nephropathy: diagnosis and treatment. Nature Reviews Endocrinology, 2013, 9, 713-723.	4.3	220
53	Retinal Neovascularization Is Prevented by Blockade of the Renin-Angiotensin System. Hypertension, 2000, 36, 1099-1104.	1.3	216
54	Genetic <i>Ace2</i> Deficiency Accentuates Vascular Inflammation and Atherosclerosis in the <i>ApoE</i> Knockout Mouse. Circulation Research, 2010, 107, 888-897.	2.0	213

#	Article	IF	CITATIONS
55	Irbesartan but Not Amlodipine Suppresses Diabetes-Associated Atherosclerosis. Circulation, 2004, 109, 1536-1542.	1.6	204
56	Advanced Glycation End Products Induce Tubular Epithelial-Myofibroblast Transition through the RAGE-ERK1/2 MAP Kinase Signaling Pathway. American Journal of Pathology, 2004, 164, 1389-1397.	1.9	202
57	Modulation of Soluble Receptor for Advanced Glycation End Products by Angiotensin-Converting Enzyme-1 Inhibition in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2005, 16, 2363-2372.	3.0	200
58	AGEs activate mesangial TGF- $\hat{l}^2\hat{a}$ "Smad signaling via an angiotensin II type I receptor interaction. Kidney International, 2004, 66, 2137-2147.	2.6	198
59	Transforming growth factor \hat{l}^21 and renal injury following subtotal nephrectomy in the rat: Role of the renin-angiotensin system. Kidney International, 1997, 51, 1553-1567.	2.6	192
60	Risks of cardiovascular events and effects of routine blood pressure lowering among patients with type 2 diabetes and atrial fibrillation: results of the ADVANCE study. European Heart Journal, 2009, 30, 1128-1135.	1.0	192
61	$\langle i \rangle$ miR-21 $\langle i \rangle$ promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. Clinical Science, 2015, 129, 1237-1249.	1.8	192
62	Epigenetics. Circulation Research, 2010, 107, 1403-1413.	2.0	185
63	Long-term Benefits of Intensive Glucose Control for Preventing End-Stage Kidney Disease: ADVANCE-ON. Diabetes Care, 2016, 39, 694-700.	4.3	184
64	Up-regulation of components of the renin-angiotensin system in the bile duct–ligated rat liver. Gastroenterology, 2002, 123, 1667-1676.	0.6	179
65	Relative Incidence of ESRD Versus Cardiovascular Mortality in Proteinuric Type 2 Diabetes and Nephropathy: Results From the DIAMETRIC (Diabetes Mellitus Treatment for Renal Insufficiency) Tj ETQq1	l 0.7843 1.1 rgBT	/Oxerlock 1
66	Risk Scores for Predicting Outcomes in Patients with Type 2 Diabetes and Nephropathy: The RENAAL Study. Clinical Journal of the American Society of Nephrology: CJASN, 2006, 1, 761-767.	2.2	171
67	Diabetic nephropathy: an insight into molecular mechanisms and emerging therapies. Expert Opinion on Therapeutic Targets, 2019, 23, 579-591.	1.5	170
68	Reconstituted High-Density Lipoprotein Attenuates Platelet Function in Individuals With Type 2 Diabetes Mellitus by Promoting Cholesterol Efflux. Circulation, 2009, 120, 2095-2104.	1.6	167
69	ACE2 Deficiency Modifies Renoprotection Afforded by ACE Inhibition in Experimental Diabetes. Diabetes, 2008, 57, 1018-1025.	0.3	164
70	Effect of a Reduction in Uric Acid on Renal Outcomes During Losartan Treatment. Hypertension, 2011, 58, 2-7.	1.3	164
71	Effect of angiotensin II type 1 receptor blockade on experimental hepatic fibrogenesis. Journal of Hepatology, 2001, 35, 376-385.	1.8	159
72	A new model of diabetic nephropathy with progressive renal impairment in the transgenic (mRen-2)27 rat (TGR). Kidney International, 1998, 54, 343-352.	2.6	153

#	Article	IF	Citations
73	Transforming growth factor- \hat{l}^2 1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney International, 2014, 85, 352-361.	2.6	153
74	Interactions between Angiotensin II and NF-ÂB-Dependent Pathways in Modulating Macrophage Infiltration in Experimental Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2004, 15, 2139-2151.	3.0	152
75	Attenuation of Extracellular Matrix Accumulation in Diabetic Nephropathy by the Advanced Glycation End Product Cross-Link Breaker ALT-711 via a Protein Kinase C-Â-Dependent Pathway. Diabetes, 2004, 53, 2921-2930.	0.3	149
76	Distinguishing Hyperglycemic Changes by Set7 in Vascular Endothelial Cells. Circulation Research, 2012, 110, 1067-1076.	2.0	147
77	Reactive Oxygen Species Can Provide Atheroprotection via NOX4-Dependent Inhibition of Inflammation and Vascular Remodeling. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 295-307.	1.1	147
78	Pathogenesis of diabetic nephropathy. Journal of Diabetes Investigation, 2011, 2, 243-247.	1.1	145
79	Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease. American Journal of Hypertension, 2004, 17, S31-S38.	1.0	144
80	Comparison of Different Measures of Urinary Protein Excretion for Prediction of Renal Events. Journal of the American Society of Nephrology: JASN, 2010, 21, 1355-1360.	3.0	144
81	Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of TypeÂ2 diabetes. Clinical Science, 2013, 124, 191-202.	1.8	142
82	Renal Connective Tissue Growth Factor Induction in Experimental Diabetes Is Prevented by Aminoguanidine. Endocrinology, 2002, 143, 4907-4915.	1.4	139
83	Accelerated Nephropathy in Diabetic Apolipoprotein E-Knockout Mouse: Role of Advanced Glycation End Products. Journal of the American Society of Nephrology: JASN, 2004, 15, 2125-2138.	3.0	137
84	Effects of aminoguanidine in preventing experimental diabetic nephropathy are related to the duration of treatment. Kidney International, 1996, 50, 627-634.	2.6	136
85	Imatinib Attenuates Diabetes-Associated Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2004, 24, 935-942.	1.1	134
86	Interactions between Renin Angiotensin System and Advanced Glycation in the Kidney. Journal of the American Society of Nephrology: JASN, 2005, 16, 2976-2984.	3.0	134
87	A Low-Sodium Diet Potentiates the Effects of Losartan in Type 2 Diabetes. Diabetes Care, 2002, 25, 663-671.	4.3	133
88	Pathological Expression of Renin and Angiotensin II in the Renal Tubule after Subtotal Nephrectomy. American Journal of Pathology, 1999, 155, 429-440.	1.9	132
89	Retinal Angiogenesis Is Mediated by an Interaction between the Angiotensin Type 2 Receptor, VEGF, and Angiopoietin. American Journal of Pathology, 2003, 163, 879-887.	1.9	130
90	Protective Effect of let-7 miRNA Family in Regulating Inflammation in Diabetes-Associated Atherosclerosis. Diabetes, 2017, 66, 2266-2277.	0.3	130

#	Article	IF	Citations
91	Advanced glycation end products and diabetic complications. Expert Opinion on Investigational Drugs, 2002, 11, 1205-1223.	1.9	121
92	Imatinib Attenuates Diabetic Nephropathy in Apolipoprotein E-Knockout Mice. Journal of the American Society of Nephrology: JASN, 2005, 16, 363-373.	3.0	121
93	Angiotensin type 2 receptor is expressed in the adult rat kidney and promotes cellular proliferation and apoptosis. Kidney International, 2000, 58, 2437-2451.	2.6	120
94	Rosiglitazone Attenuates Atherosclerosis in a Model of Insulin Insufficiency Independent of Its Metabolic Effects. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 1903-1909.	1.1	120
95	Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized <scp>MARLINA</scp> â€≺scp>T2D trial. Diabetes, Obesity and Metabolism, 2017, 19, 1610-1619.	2,2	119
96	NADPH Oxidase Nox5 Accelerates Renal Injury in Diabetic Nephropathy. Diabetes, 2017, 66, 2691-2703.	0.3	119
97	The losartan renal protection study — rationale, study design and baseline characteristics of RENAAL (Reduction of Endpoints in NIDDM with the Angiotensin II Antagonist Losartan). JRAAS - Journal of the Renin-Angiotensin-Aldosterone System, 2000, 1, 328-335.	1.0	118
98	Mechanisms of Diabetic Nephropathy. Hypertension, 2006, 48, 519-526.	1.3	118
99	Combination Therapy with the Advanced Glycation End Product Cross-Link Breaker, Alagebrium, and Angiotensin Converting Enzyme Inhibitors in Diabetes: Synergy or Redundancy?. Endocrinology, 2007, 148, 886-895.	1.4	118
100	The role of the renin-angiotensin-aldosterone system in diabetes and its vascular complications. American Journal of Hypertension, 2004, 17, S16-S20.	1.0	117
101	Rationaleâe"Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT): Evolving the management of cardiovascular risk in patients with chronic kidney disease. American Heart Journal, 2005, 149, 408-413.	1.2	115
102	Antiatherosclerotic and Renoprotective Effects of Ebselen in the Diabetic Apolipoprotein E/GPx1-Double Knockout Mouse. Diabetes, 2010, 59, 3198-3207.	0.3	114
103	Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes. Clinical Science, 2016, 130, 711-720.	1.8	114
104	Podocyte-specific Nox4 deletion affords renoprotection in a mouse model of diabetic nephropathy. Diabetologia, 2016, 59, 379-389.	2.9	114
105	Angiotensin Type 2 Receptor Antagonism Confers Renal Protection in a Rat Model of Progressive Renal Injury. Journal of the American Society of Nephrology: JASN, 2002, 13, 1773-1787.	3.0	113
106	Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes. Free Radical Biology and Medicine, 2012, 52, 716-723.	1.3	112
107	Nephropathy and Elevated BP in Mice with Podocyte-Specific NADPH Oxidase 5 Expression. Journal of the American Society of Nephrology: JASN, 2014, 25, 784-797.	3.0	109
108	PDGF signal transduction inhibition ameliorates experimental mesangial proliferative glomerulonephritis. Kidney International, 2001, 59, 1324-1332.	2.6	108

#	Article	lF	Citations
109	The Role of AGEs in Cardiovascular Disease. Current Pharmaceutical Design, 2008, 14, 979-986.	0.9	108
110	Aminoguanidine Ameliorates Overexpression of Prosclerotic Growth Factors and Collagen Deposition in Experimental Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2001, 12, 2098-2107.	3.0	108
111	Metabolic memory and diabetic nephropathy: potential role for epigenetic mechanisms. Nature Reviews Nephrology, 2010, 6, 332-341.	4.1	107
112	Dedifferentiation of Immortalized Human Podocytes in Response to Transforming Growth Factor- \hat{l}^2 . Diabetes, 2011, 60, 1779-1788.	0.3	107
113	Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E323-E330.	1.8	105
114	Disparate effects on renal and oxidative parameters following RAGE deletion, AGE accumulation inhibition, or dietary AGE control in experimental diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2010, 298, F763-F770.	1.3	105
115	Oxidative Stress, Nox Isoforms and Complications of Diabetesâ€"Potential Targets for Novel Therapies. Journal of Cardiovascular Translational Research, 2012, 5, 509-518.	1.1	104
116	NADPH Oxidase, NOX1, Mediates Vascular Injury in Ischemic Retinopathy. Antioxidants and Redox Signaling, 2014, 20, 2726-2740.	2.5	104
117	Targeted reduction of advanced glycation improves renal function in obesity. Kidney International, 2011, 80, 190-198.	2.6	102
118	PPAR- $\hat{l}\pm$ and $-\hat{l}^3$ agonists attenuate diabetic kidney disease in the apolipoprotein E knockout mouse. Nephrology Dialysis Transplantation, 2006, 21, 2399-2405.	0.4	101
119	The Renin-Angiotensin System Influences Ocular Endothelial Cell Proliferation in Diabetes. American Journal of Pathology, 2003, 162, 151-160.	1.9	100
120	Derivative of Bardoxolone Methyl, dh404, in an Inverse Dose-Dependent Manner Lessens Diabetes-Associated Atherosclerosis and Improves Diabetic Kidney Disease. Diabetes, 2014, 63, 3091-3103.	0.3	99
121	Effects of endothelin or angiotensin II receptor blockade on diabetes in the transgenic (mRen-2)27 rat. Kidney International, 2000, 57, 1882-1894.	2.6	96
122	Anemia With Impaired Erythropoietin Response in Diabetic Patients. Archives of Internal Medicine, 2005, 165, 466.	4.3	96
123	Advanced Glycation End Products and Diabetic Nephropathy. American Journal of Therapeutics, 2005, 12, 562-572.	0.5	95
124	Candesartan Attenuates Diabetic Retinal Vascular Pathology by Restoring Glyoxalase-I Function. Diabetes, 2010, 59, 3208-3215.	0.3	95
125	ALT-946 and Aminoguanidine, Inhibitors of Advanced Glycation, Improve Severe Nephropathy in the Diabetic Transgenic (mREN-2)27 Rat. Diabetes, 2002, 51, 3283-3289.	0.3	95
126	Blockade of the Renin-Angiotensin and Endothelin Systems on Progressive Renal Injury. Hypertension, 2000, 36, 561-568.	1.3	93

#	Article	IF	Citations
127	The burden of chronic kidney disease in Australian patients with type 2 diabetes (the NEFRON study). Medical Journal of Australia, 2006, 185, 140-144.	0.8	91
128	Kidney Disease End Points in a Pooled Analysis of Individual Patient–Level Data From a Large Clinical Trials Program of the Dipeptidyl Peptidase 4 Inhibitor Linagliptin in Type 2 Diabetes. American Journal of Kidney Diseases, 2015, 66, 441-449.	2.1	91
129	Urinary Transforming Growth Factor-Â Excretion in Patients With Hypertension, Type 2 Diabetes, and Elevated Albumin Excretion Rate: Effects of angiotensin receptor blockade and sodium restriction. Diabetes Care, 2002, 25, 1072-1077.	4.3	90
130	Long-term glycemic control and the rate of progression of early diabetic kidney disease. Kidney International, 1993, 44, 855-859.	2.6	89
131	Nox-4 deletion reduces oxidative stress and injury by PKC- $\langle i \rangle \hat{l} \pm \langle i \rangle$ -associated mechanisms in diabetic nephropathy. Physiological Reports, 2014, 2, e12192.	0.7	88
132	Effects of genetic hypertension on diabetic nephropathy in the rat ??? functional and structural characteristics. Journal of Hypertension, 1988, 6, 1009-1016.	0.3	87
133	Heparanase Is Involved in the Pathogenesis of Proteinuria as a Result of Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2004, 15, 68-78.	3.0	86
134	Site-Specific Antiatherogenic Effect of the Antioxidant Ebselen in the Diabetic Apolipoprotein E–Deficient Mouse. Arteriosclerosis, Thrombosis, and Vascular Biology, 2009, 29, 823-830.	1.1	86
135	Evolving concepts in advanced glycation, diabetic nephropathy, and diabetic vascular disease. Archives of Biochemistry and Biophysics, 2003, 419, 55-62.	1.4	85
136	Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno- and atheroprotection even in established micro- and macrovascular disease. Diabetologia, 2017, 60, 927-937.	2.9	85
137	Pro-resolving lipid mediators: regulators of inflammation, metabolism and kidney function. Nature Reviews Nephrology, 2021, 17, 725-739.	4.1	85
138	Metformin use and cardiovascular events in patients with type 2 diabetes and chronic kidney disease. Diabetes, Obesity and Metabolism, 2019, 21, 1199-1208.	2.2	83
139	Increased Renal Vascular Endothelial Growth Factor and Angiopoietins by Angiotensin II Infusion Is Mediated by Both AT1 and AT2 Receptors. Journal of the American Society of Nephrology: JASN, 2003, 14, 3061-3071.	3.0	82
140	Osteopontin expression in progressive renal injury in remnant kidney: Role of angiotensin II. Kidney International, 2000, 58, 1469-1480.	2.6	81
141	Modulation of nephrin in the diabetic kidney: association with systemic hypertension and increasing albuminuria. Journal of Hypertension, 2002, 20, 985-992.	0.3	81
142	Retinal Expression of Vascular Endothelial Growth Factor Is Mediated by Angiotensin Type 1 and Type 2 Receptors. Hypertension, 2004, 43, 276-281.	1.3	80
143	ACE Gene Polymorphism and Losartan Treatment in Type 2 Diabetic Patients With Nephropathy. Journal of the American Society of Nephrology: JASN, 2008, 19, 771-779.	3.0	80
144	Advanced glycation end-products induce vascular dysfunction via resistance to nitric oxide and suppression of endothelial nitric oxide synthase. Journal of Hypertension, 2010, 28, 780-788.	0.3	80

#	Article	IF	CITATIONS
145	Processed foods drive intestinal barrier permeability and microvascular diseases. Science Advances, 2021, 7, .	4.7	80
146	Renal expression of transforming growth factor- \hat{l}^2 inducible gene-h3 (\hat{l}^2 ig-h3) in normal and diabetic rats11See Editorial by Border and Noble, p. 1390 Kidney International, 1998, 54, 1052-1062.	2.6	79
147	Role of hyperlipidemia in progressive renal disease: Focus on diabetic nephropathy. Kidney International, 1999, 56, S31-S36.	2.6	79
148	Role of Nephrin in Renal Disease Including Diabetic Nephropathy. Seminars in Nephrology, 2002, 22, 393-398.	0.6	79
149	Transient Intermittent Hyperglycemia Accelerates Atherosclerosis by Promoting Myelopoiesis. Circulation Research, 2020, 127, 877-892.	2.0	77
150	Attenuation of tubular apoptosis by blockade of the renin-angiotensin system in diabetic Ren-2 rats. Kidney International, 2002, 61, 31-39.	2.6	76
151	Dual Inhibition of Neutral Endopeptidase and Angiotensin-Converting Enzyme in Rats With Hypertension and Diabetes Mellitus. Hypertension, 1998, 32, 778-785.	1.3	75
152	Vasopeptidase inhibition attenuates the progression of renal injury in subtotal nephrectomized rats. Kidney International, 2001, 60, 715-721.	2.6	75
153	Diabetes-Associated Mesenteric Vascular Hypertrophy Is Attenuated by Angiotensin-Converting Enzyme Inhibition. Diabetes, 1994, 43, 1221-1228.	0.3	74
154	Role of Angiotensin Receptor Subtypes in Mesenteric Vascular Proliferation and Hypertrophy. Hypertension, 1999, 34, 408-414.	1.3	74
155	Dicarbonyl Stress in the Absence of Hyperglycemia Increases Endothelial Inflammation and Atherogenesis Similar to That Observed in Diabetes. Diabetes, 2014, 63, 3915-3925.	0.3	74
156	Renin Angiotensin Aldosterone System Blockade and Renal Disease in Patients With Type 2 Diabetes: An Asian perspective from the RENAAL study. Diabetes Care, 2004, 27, 874-879.	4.3	73
157	Potential metabolic and inflammatory pathways between COVID-19 and new-onset diabetes. Diabetes and Metabolism, 2021, 47, 101204.	1.4	73
158	Endothelin Receptor Antagonism Ameliorates Mast Cell Infiltration, Vascular Hypertrophy, and Epidermal Growth Factor Expression in Experimental Diabetes. Circulation Research, 2000, 86, 158-165.	2.0	72
159	Long-term comparison between perindopril and nifedipine in normotensive patients with type 1 diabetes and microalbuminuria. American Journal of Kidney Diseases, 2001, 37, 890-899.	2.1	72
160	Serum Lipids and the Progression of Nephropathy in Type 1 Diabetes. Diabetes Care, 2006, 29, 317-322.	4.3	71
161	Connective Tissue Growth Factor Is Up-Regulated in the Diabetic Retina: Amelioration by Angiotensin-Converting Enzyme Inhibition. Endocrinology, 2004, 145, 860-866.	1.4	69
162	Circulating high-molecular-weight RAGE ligands activate pathways implicated in the development of diabetic nephropathy. Kidney International, 2010, 78, 287-295.	2.6	69

#	Article	IF	CITATIONS
163	Effect of diabetes and aminoguanidine therapy on renal advanced glycation end-product binding. Kidney International, 1999, 55, 907-916.	2.6	67
164	Resveratrol Inhibits Growth of Experimental Abdominal Aortic Aneurysm Associated With Upregulation of Angiotensin-Converting Enzyme 2. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 2195-2203.	1.1	67
165	Low-molecular-weight AGEs are associated with GFR and anemia in patients with type 2 diabetes. Kidney International, 2004, 66, 1167-1172.	2.6	66
166	Disparate effects of angiotensin II antagonists and calcium channel blockers on albuminuria in experimental diabetes and hypertension. Journal of Hypertension, 2003, 21, 209-216.	0.3	65
167	Hypertension and diabetes. Current Opinion in Nephrology and Hypertension, 2002, 11, 221-228.	1.0	64
168	Nephropathy in Model Combining Genetic Hypertension With Experimental Diabetes: Enalapril Versus Hydralazine and Metoprolol Therapy. Diabetes, 1990, 39, 1575-1579.	0.3	63
169	Diabetes-Induced Vascular Hypertrophy Is Accompanied by Activation of Na ⁺ -H ⁺ Exchange and Prevented by Na ⁺ -H ⁺ Exchange Inhibition. Circulation Research, 2000, 87, 1133-1140.	2.0	63
170	Genetic Examination of SETD7 and SUV39H1/H2 Methyltransferases and the Risk of Diabetes Complications in Patients With Type 1 Diabetes. Diabetes, 2011, 60, 3073-3080.	0.3	62
171	Relationship Between Levels of Advanced Glycation End Products and Their Soluble Receptor and Adverse Outcomes in Adults With Type 2 Diabetes. Diabetes Care, 2015, 38, 1891-1897.	4.3	62
172	Optimizing Treatment of Hypertension in Patients With Diabetes. JAMA - Journal of the American Medical Association, 2000, 283, 3177.	3.8	61
173	AT2R Agonist, Compound 21, Is Reno-Protective Against Type 1 Diabetic Nephropathy. Hypertension, 2015, 65, 1073-1081.	1.3	61
174	Antiproliferative Autoantigen CDA1 Transcriptionally Up-regulates p21Waf1/Cip1 by Activating p53 and MEK/ERK1/2 MAPK Pathways. Journal of Biological Chemistry, 2007, 282, 11722-11731.	1.6	60
175	Baseline Characteristics in the Trial to Reduce Cardiovascular Events With Aranesp Therapy (TREAT). American Journal of Kidney Diseases, 2009, 54, 59-69.	2.1	60
176	Alagebrium Reduces Glomerular Fibrogenesis and Inflammation Beyond Preventing RAGE Activation in Diabetic Apolipoprotein E Knockout Mice. Diabetes, 2012, 61, 2105-2113.	0.3	60
177	Direct Endothelial Nitric Oxide Synthase Activation Provides Atheroprotection in Diabetes-Accelerated Atherosclerosis. Diabetes, 2015, 64, 3937-3950.	0.3	60
178	Lipoxins Protect Against Inflammation in Diabetes-Associated Atherosclerosis. Diabetes, 2018, 67, 2657-2667.	0.3	60
179	Transactivation of RAGE mediates angiotensin-induced inflammation and atherogenesis. Journal of Clinical Investigation, 2018, 129, 406-421.	3.9	59
180	Cellular Mechanisms of Diabetic Vascular Hypertrophy. Microvascular Research, 1999, 57, 8-18.	1.1	58

#	Article	IF	CITATIONS
181	Temporal renal expression of angiogenic growth factors and their receptors in experimental diabetes. Journal of Hypertension, 2005, 23, 153-164.	0.3	58
182	Vascular expression of angiotensin type 2 receptor in the adult rat: influence of angiotensin II infusion. Journal of Hypertension, 2001, 19, 1075-1081.	0.3	57
183	Bilirubin and Progression of Nephropathy in Type 2 Diabetes: A Post Hoc Analysis of RENAAL With Independent Replication in IDNT. Diabetes, 2014, 63, 2845-2853.	0.3	57
184	The Amino-terminal Domains of the Ezrin, Radixin, and Moesin (ERM) Proteins Bind Advanced Glycation End Products, an Interaction That May Play a Role in the Development of Diabetic Complications. Journal of Biological Chemistry, 2003, 278, 25783-25789.	1.6	56
185	Efficacy and Safety of Angiotensin II Receptor Blockade in Elderly Patients With Diabetes. Diabetes Care, 2006, 29, 2210-2217.	4.3	55
186	Experimental diabetic nephropathy is accelerated in matrix metalloproteinase-2 knockout mice. Nephrology Dialysis Transplantation, 2013, 28, 55-62.	0.4	55
187	Role of angiotensin II in tubulointerstitial injury. Seminars in Nephrology, 2001, 21, 554-562.	0.6	55
188	DIABETIC VASCULAR COMPLICATIONS Clinical and Experimental Pharmacology and Physiology, 1997, 24, 770-775.	0.9	54
189	Use of genetic mouse models in the study of diabetic nephropathy. Current Diabetes Reports, 2004, 4, 435-440.	1.7	54
190	Interaction of diabetes and ACE2 in the pathogenesis of cardiovascular disease in experimental diabetes. Clinical Science, 2012, 123, 519-529.	1.8	53
191	Aminoguanidine has an anti-atherogenic effect in the cholesterol-fed rabbit. Atherosclerosis, 1998, 136, 125-131.	0.4	52
192	Increased bradykinin and "normal―angiotensin peptide levels in diabetic Sprague-Dawley and transgenic (mRen-2)27 rats. Kidney International, 1999, 56, 211-221.	2.6	52
193	Cardiovascular Disease and Diabetic Kidney Disease. Seminars in Nephrology, 2018, 38, 217-232.	0.6	52
194	Serum total renin is increased before microalbuminuria in diabetes. Kidney International, 1996, 50, 902-907.	2.6	51
195	Reduced tubular cation transport in diabetes: Prevented by ACE inhibition. Kidney International, 2003, 63, 2152-2161.	2.6	50
196	Heat shock protein expression in diabetic nephropathy. American Journal of Physiology - Renal Physiology, 2008, 295, F1817-F1824.	1.3	50
197	Effect of early menopause on bone mass in normal women and patients with qsteoporosis. American Journal of Medicine, 1988, 85, 213-216.	0.6	49
198	Renal ischemia-reperfusion increases endothelial VEGFR-2 without increasing VEGF or VEGFR-1 expression. Kidney International, 2002, 61, 1696-1706.	2.6	49

#	Article	IF	CITATIONS
199	Induction of MIF synthesis and secretion by tubular epithelial cells: A novel action of angiotensin II. Kidney International, 2003, 63, 1265-1275.	2.6	49
200	Additive hypotensive and anti-albuminuric effects of angiotensin-converting enzyme inhibition and angiotensin receptor antagonism in diabetic spontaneously hypertensive rats. Clinical Science, 2001, 100, 591-599.	1.8	48
201	Activation of the Renin-Angiotensin System Mediates the Effects of Dietary Salt Intake on Atherogenesis in the Apolipoprotein E Knockout Mouse. Hypertension, 2012, 60, 98-105.	1.3	48
202	Deficiency in Mitochondrial Complex I Activity Due to <i>Ndufs6</i> Gene Trap Insertion Induces Renal Disease. Antioxidants and Redox Signaling, 2013, 19, 331-343.	2.5	48
203	Targeting advanced glycation endproducts and mitochondrial dysfunction in cardiovascular disease. Current Opinion in Pharmacology, 2013, 13, 654-661.	1.7	48
204	50Âyears forward: mechanisms of hyperglycaemia-driven diabetic complications. Diabetologia, 2015, 58, 1708-1714.	2.9	48
205	Lipoxins Regulate the Early Growth Response–1 Network and Reverse Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1437-1448.	3.0	48
206	Complement C5a Induces Renal Injury in Diabetic Kidney Disease by Disrupting Mitochondrial Metabolic Agility. Diabetes, 2020, 69, 83-98.	0.3	48
207	Circulating bone morphogenetic protein-7 and transforming growth factor- \hat{l}^21 are better predictors of renal end points in patients with type 2 diabetes mellitus. Kidney International, 2013, 83, 278-284.	2.6	47
208	Deficiency in Apoptosis-Inducing Factor Recapitulates Chronic Kidney Disease via Aberrant Mitochondrial Homeostasis. Diabetes, 2016, 65, 1085-1098.	0.3	47
209	Pathophysiology of diabetic nephropathy. Metabolism: Clinical and Experimental, 1998, 47, 3-6.	1.5	46
210	The Role of Advanced Glycation in Reduced Organic Cation Transport Associated with Experimental Diabetes. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 456-466.	1.3	46
211	Antihypertensive therapy in a model combining spontaneous hypertension with diabetes. Kidney International, 1992, 41, 898-903.	2.6	45
212	Amylin as a growth factor during fetal and postnatal development of the rat kidney. Kidney International, 1998, 53, 25-30.	2.6	45
213	Renal expression of angiotensin receptors in long-term diabetes and the effects of angiotensin type 1 receptor blockade. Journal of Hypertension, 2002, 20, $1615-1624$.	0.3	44
214	New insights into the significance of microalbuminuria. Current Opinion in Nephrology and Hypertension, 2004, 13, 83-91.	1.0	44
215	Heparanase inhibition reduces proteinuria in a model of accelerated anti-glomerular basement membrane antibody disease. Nephrology, 2005, 10, 167-173.	0.7	44
216	The relationship between eGFR slope and subsequent risk of vascular outcomes and all-cause mortality in type 2 diabetes: the ADVANCE-ON study. Diabetologia, 2019, 62, 1988-1997.	2.9	44

#	Article	IF	CITATIONS
217	Hypertension and Diabetes: Role of the Renin-Angiotensin System. Endocrinology and Metabolism Clinics of North America, 2006, 35, 469-490.	1.2	43
218	Effects of the combination of an angiotensin II antagonist with an HMG-CoA reductase inhibitor in experimental diabetes. Kidney International, 2003, 64, 565-571.	2.6	42
219	Nox (NADPH Oxidase) 1, Nox4, and Nox5 Promote Vascular Permeability and Neovascularization in Retinopathy. Hypertension, 2020, 75, 1091-1101.	1.3	42
220	Adrenomedullin and calcitonin gene-related peptide in the rat isolated kidney and in the anaesthetised rat: in vitro and in vivo effects. European Journal of Pharmacology, 1995, 280, 91-94.	1.7	41
221	Nox-4 and progressive kidney disease. Current Opinion in Nephrology and Hypertension, 2015, 24, 74-80.	1.0	41
222	Amylin Stimulates Plasma Renin Concentration in Humans. Hypertension, 1995, 26, 460-464.	1.3	41
223	Renoprotective and antiâ€hypertensive effects of combined valsartan and perindopril in progressive diabetic nephropathy in the transgenic (mRenâ€2)27 rat. Nephrology Dialysis Transplantation, 2001, 16, 1343-1349.	0.4	40
224	ACE2 deficiency shifts energy metabolism towards glucose utilization. Metabolism: Clinical and Experimental, 2015, 64, 406-415.	1.5	39
225	Dipeptidyl peptidase-4 inhibition with linagliptin and effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: Rationale and design of the MARLINA–T2D [™] trial. Diabetes and Vascular Disease Research, 2015, 12, 455-462.	0.9	39
226	Compression force sensing regulates integrin $\hat{l}\pm llb\hat{l}^23$ adhesive function on diabetic platelets. Nature Communications, 2018, 9, 1087.	5.8	39
227	Preventing diabetes in patients with hypertension: one more reason to block the renin–angiotensin system. Journal of Hypertension, 2006, 24, S57-S63.	0.3	38
228	Advanced Glycation Urinary Protein-Bound Biomarkers and Severity of Diabetic Nephropathy in Man. American Journal of Nephrology, 2011, 34, 347-355.	1.4	38
229	New Insights Into the Use of Biomarkers of Diabetic Nephropathy. Advances in Chronic Kidney Disease, 2014, 21, 318-326.	0.6	38
230	The angiotensin II type 2 receptor agonist Compound 21 is protective in experimental diabetes-associated atherosclerosis. Diabetologia, 2016, 59, 1778-1790.	2.9	38
231	Pathophysiological Links Between Diabetes and Blood Pressure. Canadian Journal of Cardiology, 2018, 34, 585-594.	0.8	38
232	Localization of Secreted Protein Acidic and Rich in Cysteine (SPARC) Expression in the Rat Eye. Connective Tissue Research, 1999, 40, 295-303.	1.1	37
233	Targeted antioxidant therapies in hyperglycemia-mediated endothelial dysfunction. Frontiers in Bioscience - Scholar, 2011, S3, 709-729.	0.8	37
234	Ontogeny of calcitonin receptor mRNA and protein in the developing central nervous system of the rat. Journal of Comparative Neurology, 2003, 456, 29-38.	0.9	36

#	Article	IF	CITATIONS
235	Renoprotective effects of renin-angiotensin-system inhibitors. Lancet, The, 2006, 367, 899-900.	6.3	36
236	The pleiotropic actions of rosuvastatin confer renal benefits in the diabetic Apo-E knockout mouse. American Journal of Physiology - Renal Physiology, 2010, 299, F528-F535.	1.3	36
237	Angiotensin converting enzyme inhibition and calcium channel blockade in incipient diabetic nephropathy. Kidney International, 1992, 41, 904-911.	2.6	35
238	SPARC gene expression is reduced in early diabetes-related kidney growth. Kidney International, 1995, 48, 1216-1225.	2.6	35
239	Low-Molecular Weight Advanced Glycation End Products: Markers of Tissue AGE Accumulation and More?. Annals of the New York Academy of Sciences, 2005, 1043, 644-654.	1.8	35
240	High glucose-induced impairment in insulin secretion is associated with reduction in islet glucokinase in a mouse model of susceptibility to islet dysfunction. Journal of Molecular Endocrinology, 2005, 35, 39-48.	1.1	35
241	c-Jun NH2-Terminal Kinase Activity in Subcutaneous Adipose Tissue but Not Nuclear Factor-κB Activity in Peripheral Blood Mononuclear Cells Is an Independent Determinant of Insulin Resistance in Healthy Individuals. Diabetes, 2009, 58, 1259-1265.	0.3	34
242	Rationale, Design, and Baseline Characteristics of ARTS-DN: A Randomized Study to Assess the Safety and Efficacy of Finerenone in Patients with Type 2 Diabetes Mellitus and a Clinical Diagnosis of Diabetic Nephropathy. American Journal of Nephrology, 2014, 40, 572-581.	1.4	33
243	Differential effects of NOX4 and NOX1 on immune cell-mediated inflammation in the aortic sinus of diabetic <i>ApoEâ^'/â^'</i> mice. Clinical Science, 2016, 130, 1363-1374.	1.8	33
244	Glucose and Blood Pressure-Dependent Pathways–The Progression of Diabetic Kidney Disease. International Journal of Molecular Sciences, 2020, 21, 2218.	1.8	33
245	Calcitonin receptor isoforms expressed in the developing rat kidney. Kidney International, 2003, 63, 416-426.	2.6	32
246	The effects of valsartan on the accumulation of circulating and renal advanced glycation end products in experimental diabetes. Kidney International, 2004, 66, S105-S107.	2.6	32
247	Renal Microvascular Injury in Diabetes: RAGE and Redox Signaling. Antioxidants and Redox Signaling, 2007, 9, 331-342.	2.5	32
248	Role of bone-marrow- and non-bone-marrow-derived receptor for advanced glycation end-products (RAGE) in a mouse model of diabetes-associated atherosclerosis. Clinical Science, 2014, 127, 485-497.	1.8	32
249	Advanced-glycation end products in insulin-resistant states. Current Hypertension Reports, 2005, 7, 96-102.	1.5	31
250	Retinopathy and clinical outcomes in patients with type 2 diabetes mellitus, chronic kidney disease, and anemia. BMJ Open Diabetes Research and Care, 2014, 2, e000011.	1.2	31
251	Combined inhibition of neutral endopeptidase with angiotensin converting enzyme or endothelin converting enzyme in experimental diabetes. Journal of Hypertension, 2002, 20, 707-714.	0.3	30
252	Targets to retard the progression of diabetic nephropathy. Kidney International, 2005, 68, 1439-1445.	2.6	30

#	Article	IF	Citations
253	Targeting the <scp>AGEâ€RAGE</scp> axis improves renal function in the context of a healthy diet low in advanced glycation endâ€product content. Nephrology, 2013, 18, 47-56.	0.7	30
254	Microalbuminuria in diabetes. Medical Journal of Australia, 1994, 161, 265-268.	0.8	29
255	Kinins or nitric oxide, or both, are involved in the antitrophic effects of angiotensin converting enzyme inhibitors on diabetes-associated mesenteric vascular hypertrophy in the rat. Journal of Hypertension, 1996, 14, 601-607.	0.3	29
256	Ramipril inhibits AGE-RAGE-induced matrix metalloproteinase-2 activation in experimental diabetic nephropathy. Diabetology and Metabolic Syndrome, 2014, 6, 86.	1.2	29
257	Combination of Changes in Estimated GFR and Albuminuria and the Risk of Major Clinical Outcomes. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 862-872.	2.2	29
258	Angiotensin converting enzyme inhibition reduces the expression of transforming growth factor \hat{l}^21 and type IV collagen in diabetic vasculopathy. Journal of Hypertension, 1998, 16, 1603-1609.	0.3	28
259	Calcium channel blockers, either amlodipine or mibefradil, ameliorate renal injury in experimental diabetes. Kidney International, 2004, 66, 1090-1098.	2.6	28
260	Angiotensin-converting enzyme 2 mediates hyperfiltration associated with diabetes. American Journal of Physiology - Renal Physiology, 2014, 306, F773-F780.	1.3	28
261	Advanced glycation end products (AGEs) are cross-sectionally associated with insulin secretion in healthy subjects. Amino Acids, 2014, 46, 321-326.	1.2	28
262	The relationship between heat shock protein 72 expression in skeletal muscle and insulin sensitivity is dependent on adiposity. Metabolism: Clinical and Experimental, 2010, 59, 1556-1561.	1.5	27
263	Genetic Deletion of Cell Division Autoantigen 1 Retards Diabetes-Associated Renal Injury. Journal of the American Society of Nephrology: JASN, 2013, 24, 1782-1792.	3.0	27
264	Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse. Diabetologia, 2019, 62, 1712-1726.	2.9	27
265	Delineating a role for the mitochondrial permeability transition pore in diabetic kidney disease by targeting cyclophilin D. Clinical Science, 2020, 134, 239-259.	1.8	27
266	Apoptosis and Angiotensin II: Yet Another Renal Regulatory System?. Nephron Experimental Nephrology, 2001, 9, 295-300.	2.4	26
267	Use of genetic mouse models in the study of diabetic nephropathy. Current Atherosclerosis Reports, 2004, 6, 197-202.	2.0	26
268	Quinapril treatment abolishes diabetes-associated atherosclerosis in RAGE/apolipoprotein E double knockout mice. Atherosclerosis, 2014, 235, 444-448.	0.4	26
269	Anti-atherosclerotic and renoprotective effects of combined angiotensin-converting enzyme and neutral endopeptidase inhibition in diabetic apolipoprotein E-knockout mice. Journal of Hypertension, 2005, 23, 2071-2082.	0.3	25
270	Cell division autoantigen 1 enhances signaling and the profibrotic effects of transforming growth factor- \hat{l}^2 in diabetic nephropathy. Kidney International, 2011, 79, 199-209.	2.6	25

#	Article	IF	CITATIONS
271	Novel hexad repeats conserved in a putative transporter with restricted expression in cell types associated with growth, calcium exchange and homeostasis. Experimental Cell Research, 2004, 293, 31-42.	1.2	24
272	Metabolic memory: implications for diabetic vascular complications. Pediatric Diabetes, 2009, 10, 343-346.	1.2	24
273	Angiotensin-Converting Enzyme Inhibition Reduces Diabetes-Induced Vascular Hypertrophy: Morphometric Studies. Journal of Vascular Research, 1995, 32, 183-189.	0.6	23
274	Genetics of Diabetic Kidney Diseaseâ€"From the Worst of Nightmares to the Light of Dawn?. Journal of the American Society of Nephrology: JASN, 2017, 28, 389-393.	3.0	23
275	RAGE Deletion Confers Renoprotection by Reducing Responsiveness to Transforming Growth Factor- \hat{l}^2 and Increasing Resistance to Apoptosis. Diabetes, 2018, 67, 960-973.	0.3	23
276	Adverse renal effects of NLRP3 inflammasome inhibition by MCC950 in an interventional model of diabetic kidney disease. Clinical Science, 2022, 136, 167-180.	1.8	23
277	Renal function and risk for cardiovascular events in type 2 diabetic patients with hypertension: the RENAAL and LIFE studies. Journal of Hypertension, 2007, 25, 871-876.	0.3	22
278	Glycation in diabetic nephropathy. Amino Acids, 2012, 42, 1185-1192.	1.2	22
279	MESENTERIC VASCULAR ANGIOTENSIN-CONVERTING ENZYME IS INCREASED IN EXPERIMENTAL DIABETES MELLITUS. Clinical and Experimental Pharmacology and Physiology, 1992, 19, 343-347.	0.9	21
280	Renal protection and angiotensin converting enzyme inhibition in microalbuminuric type I and type II diabetic patients. Journal of Hypertension, 1996, 14, S11???14.	0.3	21
281	Lipids and diabetic renal disease. Current Diabetes Reports, 2005, 5, 445-448.	1.7	21
282	Preservation of Kidney Function with Combined Inhibition of NADPH Oxidase and Angiotensin-Converting Enzyme in Diabetic Nephropathy. American Journal of Nephrology, 2010, 32, 73-82.	1.4	21
283	Glucose homeostasis can be differentially modulated by varying individual components of a western diet. Journal of Nutritional Biochemistry, 2013, 24, 1251-1257.	1.9	21
284	Hemoglobin Stability in Patients With Anemia, CKD, and Type 2 Diabetes: An Analysis of the TREAT (Trial) Tj ETQq0 Diseases, 2013, 61, 238-246.	0 0 0 rgBT / 2.1	/Overlock 10 21
285	Angiotensin converting enzyme inhibition and calcium antagonism attenuate streptozotocin-diabetes-associated mesenteric vascular hypertrophy independently of their hypotensive action. Journal of Hypertension, 1998, 16, 793-799.	0.3	20
286	Dialysis delayed is death prevented: A clinical perspective on the RENAAL study. Kidney International, 2003, 63, 1577-1579.	2.6	20
287	A promising outlook for diabetic kidney disease. Nature Reviews Nephrology, 2019, 15, 68-70.	4.1	20
288	Choice of endpoint in kidney outcome trials: considerations from the EMPA-REG OUTCOME® trial. Nephrology Dialysis Transplantation, 2020, 35, 2103-2111.	0.4	20

#	Article	IF	Citations
289	Increased Density of Renal Amylin Binding Sites in Experimental Hypertension. Hypertension, 1997, 30, 455-460.	1.3	20
290	Comparison of simvastatin and cholestyramine in the treatment of primary hypercholesterolemia. Medical Journal of Australia, 1990, 152, 480-483.	0.8	19
291	Aminoguanidine ameliorates changes in the IGF system in experimental diabetic nephropathy. Nephrology Dialysis Transplantation, 2000, 15, 347-354.	0.4	19
292	Does vascular endothelial growth factor (VEGF) play a role in the pathogenesis of minimal change disease?. Nephrology Dialysis Transplantation, 2003, 18, 2293-2299.	0.4	19
293	Increased tubular organic ion clearance following chronic ACE inhibition in patients with type 1 diabetes. Kidney International, 2005, 67, 2494-2499.	2.6	19
294	Renin angiotensin aldosterone system blockade and renal disease in patients with type 2 diabetes: a subanalysis of Japanese patients from the RENAAL study. Clinical and Experimental Nephrology, 2006, 10, 193-200.	0.7	18
295	<i>Therapeutic Interruption of Advanced Glycation in Diabetic Nephropathy</i> . Annals of the New York Academy of Sciences, 2008, 1126, 101-106.	1.8	18
296	Treatment of Anemia With Darbepoetin Prior to Dialysis Initiation and Clinical Outcomes: Analyses From the Trial to Reduce Cardiovascular Events With Aranesp Therapy (TREAT). American Journal of Kidney Diseases, 2019, 73, 309-315.	2.1	18
297	Cardiovascular hypertrophy in diabetic spontaneously hypertensive rats: optimizing blockade of the renin–angiotensin system. Clinical Science, 2003, 104, 341-347.	1.8	17
298	Advanced Glycation End Products Inhibit Tubulogenesis and Migration of Kidney Epithelial Cells in an Ezrin-Dependent Manner. Journal of the American Society of Nephrology: JASN, 2006, 17, 414-421.	3.0	17
299	Tandem Inhibition of PKC in DiÂÂetic Nephropathy: It Takes Two to Tango?. Diabetes, 2013, 62, 1010-1011.	0.3	17
300	Diabetes Reduces Severity of Aortic Aneurysms Depending on the Presence of Cell Division Autoantigen 1 (CDA1). Diabetes, 2018, 67, 755-768.	0.3	17
301	Targeting the CDA1/CDA1BP1 Axis Retards Renal Fibrosis in Experimental Diabetic Nephropathy. Diabetes, 2019, 68, 395-408.	0.3	17
302	Effects of Low-Dose and Early versus Late Perindopril Treatment on the Progression of Severe Diabetic Nephropathy in (mREN-2)27 Rats. Journal of the American Society of Nephrology: JASN, 2002, 13, 684-692.	3.0	17
303	Extracellular matrix and its interactions in the diabetic kidney: A molecular biological approach. Journal of Diabetes and Its Complications, 1995, 9, 252-254.	1.2	16
304	Diabetes and hypertension. Medical Journal of Australia, 1995, 163, 372-375.	0.8	16
305	Attenuation of diabetes-associated mesenteric vascular hypertrophy with perindopril: Morphological and molecular biological studies. Metabolism: Clinical and Experimental, 1998, 47, 24-27.	1.5	16
306	Drug Administration in Patients with Diabetes Mellitus. Drug Safety, 1998, 18, 441-455.	1.4	16

#	Article	IF	CITATIONS
307	Antiproteinuric effect of RAS blockade: New mechanisms. Current Hypertension Reports, 2004, 6, 383-392.	1.5	16
308	Agents in development for the treatment of diabetic nephropathy. Expert Opinion on Investigational Drugs, 2005, 14, 279-294.	1.9	16
309	Agents in development for the treatment of diabetic nephropathy. Expert Opinion on Emerging Drugs, 2008, 13, 447-463.	1.0	16
310	The Use of Simvastatin, an HMG CoA Reductase Inhibitor, in Older Patients with Hypercholesterolemia and Atherosclerosis. Journal of the American Geriatrics Society, 1990, 38, 10-14.	1.3	15
311	Vascular changes in the diabetic kidney: Effects of ACE inhibition. Journal of Diabetes and Its Complications, 1995, 9, 296-300.	1.2	15
312	EFFECTS OF LIVER TRANSPLANTATION AND RESECTION ON LIPID PARAMETERS: A LONGITUDINAL STUDY. ANZ Journal of Surgery, 1996, 66, 743-746.	0.3	15
313	AMYLIN: PHYSIOLOGICAL ROLES IN THE KIDNEY AND A HYPOTHESIS FOR ITS ROLE IN HYPERTENSION. Clinical and Experimental Pharmacology and Physiology, 1998, 25, 653-660.	0.9	15
314	Is there a role for endothelin antagonists in diabetic renal disease?. Diabetes, Obesity and Metabolism, 2000, 2, 15-24.	2.2	15
315	Association of dietary sodium intake with atherogenesis in experimental diabetes and with cardiovascular disease in patients with TypeÂ1 diabetes. Clinical Science, 2013, 124, 617-626.	1.8	15
316	Plasma advanced glycation end products (AGEs) and NF-κB activity are independent determinants of diastolic and pulse pressure. Clinical Chemistry and Laboratory Medicine, 2014, 52, 129-38.	1.4	15
317	Set7 mediated interactions regulate transcriptional networks in embryonic stem cells. Nucleic Acids Research, 2016, 44, gkw621.	6.5	15
318	ESRD After Heart Failure, Myocardial Infarction, or Stroke in TypeÂ2 Diabetic Patients With CKD. American Journal of Kidney Diseases, 2017, 70, 522-531.	2.1	15
319	Glomerular filtration rate in early experimental diabetes. The Journal of Diabetic Complications, 1988, 2, 8-11.	0.2	14
320	NEPHRIN EXPRESSION IN THE POST-NATAL DEVELOPING KIDNEY IN NORMOTENSIVE AND HYPERTENSIVE RATS. Clinical and Experimental Hypertension, 2002, 24, 371-381.	0.5	14
321	Bardoxolone improves kidney function in type 2 diabetes. Nature Reviews Nephrology, 2011, 7, 552-553.	4.1	14
322	Independent of Renox, NOX5 Promotes Renal Inflammation and Fibrosis in Diabetes by Activating ROS-Sensitive Pathways. Diabetes, 2022, 71, 1282-1298.	0.3	14
323	Complications of Diabetes Mellitus. , 2016, , 1484-1581.		13

Strategies for glucose control in a study population with diabetes, renal disease and anemia (Treat) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

#	Article	IF	CITATIONS
325	Advanced Glycation: How are we Progressing to Combat this Web of Sugar Anomalies in Diabetic Nephropathy. Current Pharmaceutical Design, 2004, 10, 3361-3372.	0.9	13
326	Comparison of early renal dysfunction in type I and type II diabetes: differing associations with blood pressure and glycaemic control. Diabetes Research and Clinical Practice, 1988, 4, 133-141.	1.1	12
327	Characterization of binding sites for amylin, calcitonin, and CGRP in primate kidney. American Journal of Physiology - Renal Physiology, 1998, 274, F51-F62.	1.3	12
328	Additive hypotensive and anti-albuminuric effects of angiotensin-converting enzyme inhibition and angiotensin receptor antagonism in diabetic spontaneously hypertensive rats. Clinical Science, 2001, 100, 591.	1.8	12
329	Cardiorenal Protective Effects of Vasopeptidase Inhibition with Omapatrilat in Hypertensive Transgenic (mRENâ€2)27 Rats. Clinical and Experimental Hypertension, 2004, 26, 69-80.	0.5	12
330	Effect of LDL Cholesterol and Treatment With Losartan on End-Stage Renal Disease in the RENAAL Study. Diabetes Care, 2008, 31, 445-447.	4.3	12
331	New Glucose-Lowering Agents for Diabetic Kidney Disease. Advances in Chronic Kidney Disease, 2018, 25, 149-157.	0.6	12
332	Cardiovascular hypertrophy in diabetic spontaneously hypertensive rats: optimizing blockade of the reninâ€'angiotensin system. Clinical Science, 2003, 104, 341.	1.8	11
333	Angiotensin Receptor Blockers and the Kidney: Possible Advantages over ACE Inhibition?. Cardiovascular Drug Reviews, 2001, 19, 75-86.	4.4	11
334	What Are New Avenues for Renal Protection, in Addition to RAAS Inhibition?. Current Hypertension Reports, 2012, 14, 100-110.	1.5	10
335	The Management of Diabetic Proteinuria. Drugs and Aging, 1992, 2, 301-309.	1.3	9
336	Microalbuminuria and diabetic cardiovascular disease. Current Atherosclerosis Reports, 2003, 5, 350-357.	2.0	9
337	Amylin in the Periphery. Scientific World Journal, The, 2003, 3, 163-175.	0.8	9
338	Role of Cell Division Autoantigen 1 (CDA1) in Cell Proliferation and Fibrosis. Genes, 2010, 1, 335-348.	1.0	9
339	Protective Effect of Inflammasome Activation by Hydrogen Peroxide in a Mouse Model of Septic Shock. Critical Care Medicine, 2017, 45, e184-e194.	0.4	9
340	Targeted deletion of nicotinamide adenine dinucleotide phosphate oxidase 4Âfrom proximal tubules is dispensable for diabetic kidney disease development. Nephrology Dialysis Transplantation, 2021, 36, 988-997.	0.4	9
341	High Fasting Blood Glucose Level With Unknown Prior History of Diabetes Is Associated With High Risk of Severe Adverse COVID-19 Outcome. Frontiers in Endocrinology, 2021, 12, 791476.	1.5	9
342	Intermittent diabetic microalbuminuria: Association with blood pressure, glycemic control, and protein intake. The Journal of Diabetic Complications, 1989, 3, 92-98.	0.2	8

#	Article	IF	CITATIONS
343	DIABETIC RENAL MICROVASCULAR DISEASE: THE ROLE OF HYPERTENSION AND ACE INHIBITORS. Clinical and Experimental Pharmacology and Physiology, 1992, 19, 23-27.	0.9	8
344	Diabetes and Hypertension: Prognostic and Therapeutic Considerations. Blood Pressure, 1995, 4, 329-338.	0.7	8
345	Combination Antihypertensive Therapy in the Treatment of Diabetic Nephropathy. Diabetes Technology and Therapeutics, 2002, 4, 313-321.	2.4	8
346	Diabetes induces Na/H exchange activity and hypertrophy of rat mesenteric but not basilar arteries. Diabetes Research and Clinical Practice, 2005, 70, 201-208.	1.1	8
347	Is diabetic nephropathy disappearing from clinical practice?. Pediatric Diabetes, 2006, 7, 237-238.	1.2	8
348	Diabetic patients and kidney protection: an attainable target. Journal of Hypertension, 2008, 26, S3-S7.	0.3	8
349	Complications of Diabetes Mellitus. , 2011, , 1462-1551.		8
350	Diabetic Nephropathy. Diabetes Technology and Therapeutics, 1999, 1, 489-496.	2.4	7
351	Blockade of the renin-angiotensin system: better late than never. American Journal of Kidney Diseases, 2004, 43, 1113-1115.	2.1	7
352	The assessment of kidney function by general practitioners in Australian patients with type 2 diabetes (NEFRONâ€⊋). Medical Journal of Australia, 2006, 185, 259-262.	0.8	7
353	Eplerenone does not attenuate diabetes-associated atherosclerosis. Journal of Hypertension, 2009, 27, 1431-1438.	0.3	7
354	Recent advances in glucose-lowering treatment to reduce diabetic kidney disease. Expert Opinion on Pharmacotherapy, 2015, 16, 1325-1333.	0.9	7
355	Extracellular matrix, growth factors and their interactions in the pathogenesis of diabetic kidney disease. Nephrology, 1996, 2, 291-303.	0.7	6
356	Renal amylin binding in normotensive and hypertensive rats. Journal of Hypertension, 1997, 15, 1245-1252.	0.3	6
357	Can Advanced Glycation End Product Inhibitors Modulate More than One Pathway to Enhance Renoprotection in Diabetes?. Annals of the New York Academy of Sciences, 2005, 1043, 750-758.	1.8	6
358	Localization of the ezrin binding epitope for advanced glycation endproducts. International Journal of Biochemistry and Cell Biology, 2008, 40, 1570-1580.	1.2	6
359	Diabetic vascular hypertrophy and albuminuria: Effect of angiotensin converting enzyme inhibition. Journal of Diabetes and Its Complications, 1995, 9, 318-322.	1.2	5
360	Interactions between growth factors in the kidney: Implications for progressive renal injury. Kidney International, 2003, 63, 1584-1585.	2.6	5

#	Article	IF	CITATIONS
361	Localization of the Ezrin Binding Epitope for Glycated Proteins. Annals of the New York Academy of Sciences, 2005, 1043, 617-624.	1.8	5
362	Effects of Advanced Glycation End Products on Ezrin-Dependent Functions in LLC-PK1 Proximal Tubule Cells. Annals of the New York Academy of Sciences, 2005, 1043, 609-616.	1.8	5
363	Renoprotective effects of pentoxifylline in the PREDIAN trial. Nature Reviews Nephrology, 2014, 10, 547-548.	4.1	5
364	Antihypertensive Treatment in NIDDM, with Special Reference to Abnormal Albuminuria. , 2000, , 441-459.		5
365	Recent advances in the pharmacotherapeutic management of diabetic kidney disease. Expert Opinion on Pharmacotherapy, 2022, 23, 791-803.	0.9	5
366	Experimental diabetic nephropathy: Is it relevant to the human disease. Nephrology, 2000, 5, 177-185.	0.7	4
367	Comparison of the Effects of Vitamins and/or Mineral Supplementation on Glomerular and Tubular Dysfunction in Type 2 Diabetes: Response to Farvid et al Diabetes Care, 2006, 29, 747-748.	4.3	4
368	Diabetes and Aortic Aneurysm. Angiology, 2016, 67, 510-512.	0.8	4
369	Potential cardiorenal benefits of efpeglenatide in diabetes. Nature Reviews Nephrology, 2021, 17, 708-709.	4.1	4
370	Diabetic Vascular Injury and ACE. Drugs and Aging, 1996, 8, 38-46.	1.3	3
371	Turning up the heat: heat shock proteins, hypertension and cardiovascular risk. Journal of Hypertension, 2002, 20, 1713-1714.	0.3	3
372	Does intensive glycemic control for type 2 diabetes mellitus have long-term benefits for cardiovascular disease risk?. Nature Reviews Endocrinology, 2009, 5, 138-139.	4.3	3
373	Identifying and interpreting novel targets that address more than one diabetic complication: a strategy for optimal end organ protection in diabetes. Diabetology International, 2014, 5, 1-20.	0.7	3
374	Disparate Effects of Diabetes and Hyperlipidemia on Experimental Kidney Disease. Frontiers in Physiology, 2020, 11, 518.	1.3	3
375	Targeting Methylglyoxal in Diabetic Kidney Disease Using the Mitochondria-Targeted Compound MitoGamide. Nutrients, 2021, 13, 1457.	1.7	3
376	Nuclear scanning in the diagnosis and localization of parathyroid adenomas. Medical Journal of Australia, 1986, 144, 521-524.	0.8	3
377	Renal protection by angiotensin II receptor antagonists in patients with type 2 diabetes. Medical Journal of Australia, 2001, 175, 397-399.	0.8	2
378	Myocardial infarction increases ACE2 expression in rat and humans: reply. European Heart Journal, 2005, 26, 1142-1143.	1.0	2

#	Article	lF	Citations
379	Can you reduce your AGE?. Drug Discovery Today: Therapeutic Strategies, 2007, 4, 85-92.	0.5	2
380	DIRECT study: a commentary. Diabetes and Vascular Disease Research, 2010, 7, 319-320.	0.9	2
381	Core Patient-Reported Outcomes (PROs) and PRO Measures (PROMs) for Polypharmacy Medicines Reviews: A Sequential Mixed-Methods Study. Patient Preference and Adherence, 2019, Volume 13, 2071-2087.	0.8	2
382	Antihypertensive Treatment in NIDDM, with Special Reference to Abnormal Albuminuria., 1994,, 341-351.		2
383	Antihypertensive Treatment in NIDDM, With Special Reference to Abnormal Albuminuria., 1998,, 419-434.		2
384	Choosing the right angiotensin-receptor blocker for patients with diabetes: still controversial. Cmaj, 2013, 185, 1023-1024.	0.9	1
385	Key profibrotic and pro-inflammatory pathways in the pathogenesis of diabetic kidney disease. Diabetic Nephropathy, $2021, 1, 15-26$.	0.1	1
386	Advanced Glycation End-Products and Diabetic Renal Disease. , 2000, , 247-253.		1
387	Glycosylation Inhibitors, PKC Inhibitors and Related Interventions Against Complications. , 2007, , 219-228.		1
388	Antihypertensive Treatment in NIDDM, with Special Reference to Abnormal Albuminuria., 1996,, 385-396.		1
389	Angiotensin-converting enzyme inhibition attenuates renal platelet-derived growth factor gene expression and cell proliferation in subtotal nephrectomy. Nephrology, 2001, 6, 290-297.	0.7	0
390	Renal protection by angiotensin II receptor antagonists in patients with type 2 diabetes. Medical Journal of Australia, 2002, 176, 296-297.	0.8	0
391	DOES COMBINED BLOCKADE OF THE RAS AND AGE FORMATION CONFER SUPERIOR RETROPROTECTION IN A HYPERTENSIVE MODEL OF DIABETIC NEPHROPATHY?. Nephrology, 2002, 7, A68-A68.	0.7	0
392	Renal protection: What have we learnt from ADVANCE about kidney disease in type 2 diabetes?. Diabetes, Obesity and Metabolism, 2020, 22, 12-18.	2,2	0
393	Protective role for Epidermal Growth Factor in Advanced Diabetic Nephropathy of Transgenic (mRenâ€2)27 rats. Nephrology, 2000, 5, A102-A102.	0.7	0
394	THE IMPORTANCE OF BLOCKADE OF THE RENIN ANGIOTENSIN AND ENDOTHELIN SYSTEMS ON PROGRESSIVE RENAL INJURY IN SUBTOTALLY NEPHRECTOMISED RATS: USE OF COMBINATION REGIMENS. Nephrology, 2000, 5, A109-A109.	0.7	0
395	LOSS OF CIRCADIAN RHYTHM OF BLOOD PRESSURE IN THE DIABETIC SHR COMPARED TO THE CONTROL SHR. Nephrology, 2000, 5, A70-A70.	0.7	0
396	Protective role for Epidermal Growth Factor in Advanced Diabetic Nephropathy of Transgenic (mRenâ€2)27 rats. Nephrology, 2000, 5, A102-A102.	0.7	0

#	Article	IF	CITATIONS
397	ACE and diabetes. , 2001, , 177-184.		O
398	Renal Microvascular Injury in Diabetes: RAGE and Redox Signaling. Antioxidants and Redox Signaling, 2006, .	2.5	0
399	The Renin Angiotensin System. , 2011, , 323-335.		0
400	Microalbuminuria in diabetes. Medical Journal of Australia, 1994, 161, 574-575.	0.8	0
401	Advanced Glycation End-Products and Diabetic Renal Disease. , 1998, , 257-262.		0
402	Vascular Endothelial Growth Factor as a Determinant of Diabetic Nephropathy., 2006,, 187-199.		0
403	Diabetic kidney disease, a potentially serious issue resulting from collision of the Covid-19 and diabetes global pandemics. Diabetic Nephropathy, 2022, .	0.1	0