Steffen Jeschke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5245084/publications.pdf

Version: 2024-02-01

759233 794594 20 502 12 19 citations h-index g-index papers 21 21 21 941 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Supervised Machine Learningâ€Based Classification of Liâ^'S Battery Electrolytes. Batteries and Supercaps, 2021, 4, 1156-1162.	4.7	7
2	3D-QSAR for binding constants of \hat{l}^2 -cyclodextrin host-guest complexes by utilising spectrophores as molecular descriptors. Chemosphere, 2019, 225, 135-138.	8.2	12
3	Catching TFSI: A Computational–Experimental Approach to β yclodextrinâ€Based Host–Guest Systems as electrolytes for Liâ€lon Batteries. ChemSusChem, 2018, 11, 1942-1949.	6.8	3
4	Graphitic microstructure and performance of carbon fibre Li-ion structural battery electrodes. Multifunctional Materials, 2018, 1, 015003.	3.7	65
5	Solvation structure in dilute to highly concentrated electrolytes for lithium-ion and sodium-ion batteries. Electrochimica Acta, 2017, 233, 134-141.	5.2	60
6	Predicting the Solubility of Sulfur: A COSMOâ€RSâ€Based Approach to Investigate Electrolytes for Li–S Batteries. Chemistry - A European Journal, 2017, 23, 9130-9136.	3.3	23
7	Fluorinated Ether Based Electrolyte for High-Energy Lithium–Sulfur Batteries: Li ⁺ Solvation Role Behind Reduced Polysulfide Solubility. Chemistry of Materials, 2017, 29, 10037-10044.	6.7	75
8	Highly-fluorous pyrazolide-based lithium salt in PVDF-HFP as solid polymer electrolyte. Solid State lonics, 2016, 292, 45-51.	2.7	18
9	Towards more thermally stable Li-ion battery electrolytes with salts and solvents sharing nitrile functionality. Journal of Power Sources, 2016, 332, 204-212.	7.8	22
10	Transport of lons in Salt-in-Polymer Membranes. , 2016, 8, 129-155.		1
11	Improved synthesis of perfluoroalkyl substituted 1,3,4-oxadiazoles as precursors for corresponding 1,2,4-triazoles. Journal of Fluorine Chemistry, 2016, 183, 30-35.	1.7	10
12	3D laser scanning confocal microscopy of siloxane-based comb and double-comb polymers in PVDF-HFP thin films. Journal of Coatings Technology Research, 2016, 13, 577-587.	2.5	7
13	Characterization of semi-interpenetrating polymer electrolytes containing poly(vinylidene) Tj ETQq1 1 0.784314 rg	gBT /Overl	lock 10 Tf 50
14	FTIR and DFT studies of LiTFSI solvation in 3-methyl-2-oxazolidinone. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 157, 220-226.	3.9	7
15	PVDF-HFP/ether-modified polysiloxane membranes obtained via airbrush spraying as active separators for application in lithium ion batteries. Chemical Communications, 2015, 51, 12048-12051.	4.1	50
16	Semi-interpenetrating polymer network of poly(methyl methacrylate) and ether-modified polysiloxane. Solid State Ionics, 2015, 274, 55-63.	2.7	21
17	Synthesis and electrochemistry of polymer based electrolytes forÂlithium batteries. Progress in Solid State Chemistry, 2014, 42, 85-105.	7.2	45
18	Computational study of structural properties of lithium cation complexes with carbamate-modified disiloxanes. Physical Chemistry Chemical Physics, 2014, 16, 14236-14243.	2.8	5

STEFFEN JESCHKE

#	Article	IF	CITATIONS
19	Study of Carbamateâ€Modified Disiloxane in Porous PVDFâ€HFP Membranes: New Electrolytes/Separators for Lithiumâ€Ion Batteries. ChemPhysChem, 2014, 15, 1761-1771.	2.1	42
20	Disiloxanes with cyclic or non-cyclic carbamate moieties as electrolytes for lithium-ion batteries. Chemical Communications, 2013, 49, 1190.	4.1	20