List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5244556/publications.pdf Version: 2024-02-01

ΟιλΝΙΙΙΙ

#	Article	IF	CITATIONS
1	The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics, 2015, 47, 949-954.	9.4	555
2	Modulating plant growth–metabolism coordination for sustainable agriculture. Nature, 2018, 560, 595-600.	13.7	412
3	Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics, 2014, 46, 652-656.	9.4	338
4	Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science, 2020, 367, .	6.0	242
5	Organic field-effect transistor-based flexible sensors. Chemical Society Reviews, 2020, 49, 3423-3460.	18.7	230
6	G-protein Î ² Î ³ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature Communications, 2018, 9, 852.	5.8	219
7	Developments of Diketopyrrolopyrroleâ€Dyeâ€Based Organic Semiconductors for a Wide Range of Applications in Electronics. Advanced Materials, 2020, 32, e1903882.	11.1	212
8	Biodegradable Materials and Green Processing for Green Electronics. Advanced Materials, 2020, 32, e2001591.	11.1	168
9	Tin oxide for optoelectronic, photovoltaic and energy storage devices: a review. Journal of Materials Chemistry A, 2021, 9, 16621-16684.	5.2	146
10	Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal, 2018, 16, 1858-1867.	4.1	101
11	Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Research, 2017, 27, 1142-1156.	5.7	98
12	Shedding light on integrative GA signaling. Current Opinion in Plant Biology, 2014, 21, 89-95.	3.5	94
13	Organic Electrochemical Transistors for In Vivo Bioelectronics. Advanced Materials, 2021, 33, e2101874.	11.1	78
14	DNA Replication Factor C1 Mediates Genomic Stability and Transcriptional Gene Silencing in <i>Arabidopsis</i> Â Â. Plant Cell, 2010, 22, 2336-2352.	3.1	72
15	CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. Plant Molecular Biology, 2015, 89, 385-401.	2.0	71
16	Photoelectrochemical Synthesis of Ammonia with Black Phosphorus. Advanced Functional Materials, 2020, 30, 2002731.	7.8	69
17	Improving Crop Nitrogen Use Efficiency Toward Sustainable Green Revolution. Annual Review of Plant Biology, 2022, 73, 523-551.	8.6	65
18	Crystalline Red Phosphorus Nanoribbons: Large cale Synthesis and Electrochemical Nitrogen Fixation. Angewandte Chemie - International Edition, 2020, 59, 14383-14387.	7.2	58

#	Article	IF	CITATIONS
19	Diatom ecological response to altered hydrological forcing of a shallow lake on the Yangtze floodplain, SE China. Ecohydrology, 2012, 5, 316-325.	1.1	50
20	Nitrogen signaling and use efficiency in plants: what's new?. Current Opinion in Plant Biology, 2015, 27, 192-198.	3.5	50
21	OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice. Rice, 2018, 11, 36.	1.7	47
22	Tuning the Charge Carrier Polarity of Organic Transistors by Varying the Electron Affinity of the Flanked Units in Diketopyrrolopyrroleâ€Based Copolymers. Advanced Functional Materials, 2020, 30, 1907452.	7.8	45
23	Synergistic Use of Pyridine and Selenophene in a Diketopyrrolopyrroleâ€Based Conjugated Polymer Enhances the Electron Mobility in Organic Transistors. Advanced Functional Materials, 2020, 30, 2000489.	7.8	43
24	Benzo[1,2-b:4,5-b′]dithiophene and benzotriazole based small molecule for solution-processed organic solar cells. Organic Electronics, 2014, 15, 405-413.	1.4	42
25	Two-dimensional benzodithiophene and benzothiadiazole based solution-processed small molecular organic field-effect transistors & solar cells. Journal of Materials Chemistry C, 2014, 2, 3921.	2.7	41
26	Hyperconjugated side chained benzodithiophene and 4,7-di-2-thienyl-2,1,3-benzothiadiazole based polymer for solar cells. Polymer Chemistry, 2014, 5, 2076.	1.9	39
27	Enhancing the Electrochemical Doping Efficiency in Diketopyrrolopyrroleâ€Based Polymer for Organic Electrochemical Transistors. Advanced Electronic Materials, 2021, 7, .	2.6	39
28	Genome-wide mapping reveals R-loops associated with centromeric repeats in maize. Genome Research, 2021, 31, 1409-1418.	2.4	37
29	Novel Donor–Acceptor Polymer Containing 4,7â€Bis(thiophenâ€2â€yl)benzo[c][1,2,5]thiadiazole for Polymer Solar Cells with Power Conversion Efficiency of 6.21%. Macromolecular Rapid Communications, 2014, 35, 1153-1157.	2.0	33
30	Naphthalene flanked diketopyrrolopyrrole based organic semiconductors for high performance organic field effect transistors. New Journal of Chemistry, 2018, 42, 12374-12385.	1.4	29
31	Simultaneous Tuning of Alkyl Chains and End Groups in Non-fused Ring Electron Acceptors for Efficient and Stable Organic Solar Cells. ACS Applied Materials & Interfaces, 2022, 14, 24374-24385.	4.0	28
32	Emerging insights into heterotrimeric G protein signaling in plants. Journal of Genetics and Genomics, 2016, 43, 495-502.	1.7	26
33	Low HOMO isoindigo based small molecule for high open-circuit voltage 1.0V solution processed organic solar cells. Synthetic Metals, 2013, 178, 38-43.	2.1	25
34	The electrical, thermal, and thermoelectric properties of black phosphorus. APL Materials, 2020, 8, .	2.2	25
35	Improved open-circuit voltage of benzodithiophene based polymer solar cells using bulky terthiophene side group. Solar Energy Materials and Solar Cells, 2015, 138, 26-34.	3.0	23
36	SQUAMOSA Promoter Binding Protein-like Transcription Factors: Targets for Improving Cereal Grain Yield. Molecular Plant, 2016, 9, 765-767.	3.9	23

#	Article	IF	CITATIONS
37	New small molecules with thiazolothiazole and benzothiadiazole acceptors for solution-processed organic solar cells. New Journal of Chemistry, 2014, 38, 1559.	1.4	21
38	Diketopyrrolopyrrole-Based Dual-Acceptor Copolymers to Realize Tunable Charge Carrier Polarity of Organic Field-Effect Transistors and High-Performance Nonvolatile Ambipolar Flash Memories. ACS Applied Electronic Materials, 2020, 2, 1609-1618.	2.0	21
39	Near-infrared response thienoisoindigo-based small molecule for solution-processed bulk-heterojunction solar cells. Synthetic Metals, 2014, 187, 24-29.	2.1	20
40	Improving coordination of plant growth and nitrogen metabolism for sustainable agriculture. ABIOTECH, 2020, 1, 255-275.	1.8	20
41	Triethylene Glycol Substituted Diketopyrrolopyrrole―and Isoindigoâ€Dye Based Donor–Acceptor Copolymers for Organic Lightâ€Emitting Electrochemical Cells and Transistors. Advanced Electronic Materials, 2020, 6, 1901414.	2.6	20
42	Diketopyrrolopyrrole based organic semiconductors with different numbers of thiophene units: symmetry tuning effect on electronic devices. New Journal of Chemistry, 2018, 42, 4017-4028.	1.4	19
43	Energy-Level Manipulation in Novel Indacenodithiophene-Based Donor–Acceptor Polymers for Near-Infrared Organic Photodetectors. ACS Applied Materials & Interfaces, 2021, 13, 29866-29875.	4.0	19
44	Regulation of OsmiR156h through Alternative Polyadenylation Improves Grain Yield in Rice. PLoS ONE, 2015, 10, e0126154.	1.1	19
45	New Benzo[1,2â€ <i>b</i> :4,5â€ <i>b′</i>]dithiopheneâ€Based Small Molecules Containing Alkoxyphenyl Side Chains for High Efficiency Solutionâ€Processed Organic Solar Cells. ChemSusChem, 2014, 7, 3319-3327.	3.6	18
46	Short Alkyl Chain Engineering Modulation on Naphthalene Flanked Diketopyrrolopyrrole toward Highâ€Performance Single Crystal Transistors and Organic Thin Film Displays. Advanced Electronic Materials, 2021, 7, 2000804.	2.6	18
47	Development of New Twoâ€Dimensional Small Molecules Based on Benzodifuran for Efficient Organic Solar Cells. Chemistry - an Asian Journal, 2014, 9, 2621-2627.	1.7	16
48	Naphthalene flanked diketopyrrolopyrrole: a new conjugated building block with hexyl or octyl alkyl side chains for electropolymerization studies and its biosensor applications. Polymer Chemistry, 2019, 10, 3722-3739.	1.9	16
49	Novel Coâ€Doped Y ₂ GeO ₅ :Pr ³⁺ ,Tb ³⁺ : Deep Trap Level Formation and Analog Binary Optical Storage with Submicron Information Points. Advanced Optical Materials, 2021, 9, 2002090.	3.6	16
50	Green Revolution DELLAs: From translational reinitiation to future sustainable agriculture. Molecular Plant, 2021, 14, 547-549.	3.9	16
51	Modulating the C-terminus of DEP1 synergistically enhances grain quality and yield in rice. Journal of Genetics and Genomics, 2022, 49, 506-509.	1.7	13
52	Aromatic Heterocycle 1,3,4â€Oxadiazoleâ€Substituted Thieno[3,4â€ <i>b</i>]thiophene to Build Lowâ€Bandgap Polymer for Photovoltaic Application. Macromolecular Rapid Communications, 2015, 36, 2065-2069.	2.0	12
53	Highâ€Performance Semitransparent Organic Solar Cells Enabled by Improved Charge Transport and Optical Engineering of Ternary Blend Active Layer. Solar Rrl, 2022, 6, 2100785.	3.1	12
54	From Octahedron Crystals to 2D Silicon Nanosheets: Facetâ€Selective Cleavage and Biophotonic Applications. Small, 2020, 16, e2003594.	5.2	11

#	Article	IF	CITATIONS
55	Emerging roles of centromeric RNAs in centromere formation and function. Genes and Genomics, 2021, 43, 217-226.	0.5	11
56	Topochemical Synthesis of Copper Phosphide Nanoribbons for Flexible Optoelectronic Memristors. Advanced Functional Materials, 0, , 2110900.	7.8	11
57	Directional Carrier Polarity Tunability in Ambipolar Organic Transistors Based on Diketopyrrolopyrrole and Bithiophene Imide Dual-Acceptor Semiconducting Polymers. Chemistry of Materials, 2022, 34, 3140-3151.	3.2	10
58	Novel pendent thiophene sideâ€chained benzodithiophene for polymer solar cells. Journal of Polymer Science Part A, 2015, 53, 1558-1566.	2.5	9
59	Naphthalene flanked diketopyrrolopyrrole: A new DPP family member and its comparative optoelectronic properties with thiophene- and furan- flanked DPP counterparts. Organic Electronics, 2019, 74, 290-298.	1.4	9
60	Crystalline Red Phosphorus Nanoribbons: Largeâ€Scale Synthesis and Electrochemical Nitrogen Fixation. Angewandte Chemie, 2020, 132, 14489-14493.	1.6	9
61	Versatile nature of anthanthrone based polymers as active multifunctional semiconductors for various organic electronic devices. Materials Advances, 2020, 1, 3428-3438.	2.6	9
62	Naphthalene Flanked Diketopyrrolopyrrole: A New Functional Dye Based Optical Sensors for Monitoring Cyanide Ions in Water. Advanced Materials Technologies, 0, , 2100170.	3.0	6
63	Synthesis and Optical-electronic Properties of a Novel Star-shaped Benzodithiophene Molecule. Chemistry Letters, 2015, 44, 291-293.	0.7	5
64	A multicolorâ€emitted phosphor for temperature sensing and multimode dynamic antiâ€counterfeiting. Journal of the American Ceramic Society, 2022, 105, 6241-6251.	1.9	5
65	An electrochemically prepared sky-blue light emitting ether functionalized polyfluorene as chemosensor for metal ions. Chinese Journal of Polymer Science (English Edition), 2013, 31, 1579-1589.	2.0	4
66	Novel Panchromatic Absorption Material, Isoindigo-based A–π–A–π–A Small Molecule. Chemistry Letters, 2014, 43, 1870-1872.	0.7	4
67	Hydrophilic poly-ether side-chained benzodithiophene-based homopolymer for solar cells and field-effect transistors. Journal of Materials Science, 2015, 50, 2263-2271.	1.7	4
68	Thiophene Ï€ bridge effect on bulky sideâ€chained benzodithiopheneâ€based photovoltaic polymers. Journal of Polymer Science Part A, 2016, 54, 1615-1622.	2.5	4
69	Structural Geometry Variation of 1,4-Naphthalene-Based Co-Polymers to Tune the Device Performance of PVK-Host-Based OLEDs. Polymers, 2021, 13, 2914.	2.0	4
70	A Hybrid Deep Learning Model for Recognizing Actions of Distracted Drivers. Sensors, 2021, 21, 7424.	2.1	4
71	A triple bond side-chained 2D-conjugated benzodithiophene based photovoltaic polymer. RSC Advances, 2014, 4, 58426-58431.	1.7	3
72	Black Phosphorus—Diketopyrrolopyrrole Polymer Semiconductor Hybrid for Enhanced Charge Transfer and Photodetection. Advanced Photonics Research, 2021, 2, 2100150.	1.7	3

#	Article	IF	CITATIONS
73	Synthesis and solar cells applications of EOâ€₽Fâ€ÐTBT polymer. Journal of Applied Polymer Science, 2014, 131, .	1.3	2

Green Electronics: Biodegradable Materials and Green Processing for Green Electronics (Adv. Mater.) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

75	Influence of cyanate ester modifier on the thermal, mechanical, and corrosive properties of epoxy composite coating. Materials and Corrosion - Werkstoffe Und Korrosion, 0, , .	0.8	2
76	Beyond the Green Revolution: Improving crop productivity and sustainability by modulating plant growth-metabolic coordination. Molecular Plant, 2022, 15, 573-576.	3.9	2
77	Lightâ€Emitting Electrochemical Cells: Triethylene Glycol Substituted Diketopyrrolopyrrole―and Isoindigoâ€Dye Based Donor–Acceptor Copolymers for Organic Lightâ€Emitting Electrochemical Cells and Transistors (Adv. Electron. Mater. 5/2020). Advanced Electronic Materials, 2020, 6, 2070025.	2.6	1
78	Photoelectrochemical Ammonia Synthesis: Photoelectrochemical Synthesis of Ammonia with Black Phosphorus (Adv. Funct. Mater. 24/2020). Advanced Functional Materials, 2020, 30, 2070156.	7.8	1
79	Organic Electrochemical Transistors for In Vivo Bioelectronics (Adv. Mater. 49/2021). Advanced Materials, 2021, 33, .	11.1	1
80	Effect of alfalfa substituted with ramie on the expression of apoptotic genes in the gastrointestinal tracts of goats. Food Science and Nutrition, 2022, 10, 2400-2407.	1.5	0
81	Topochemical Synthesis of Copper Phosphide Nanoribbons for Flexible Optoelectronic Memristors (Adv. Funct. Mater. 14/2022). Advanced Functional Materials, 2022, 32, .	7.8	0