
Neil E Kay

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5244265/publications.pdf Version: 2024-02-01

NEIL E KAV

#	Article	IF	CITATIONS
1	lbrutinib versus Ofatumumab in Previously Treated Chronic Lymphoid Leukemia. New England Journal of Medicine, 2014, 371, 213-223.	13.9	1,427
2	ZAP-70 Compared with Immunoglobulin Heavy-Chain Gene Mutation Status as a Predictor of Disease Progression in Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2004, 351, 893-901.	13.9	824
3	lbrutinib–Rituximab or Chemoimmunotherapy for Chronic Lymphocytic Leukemia. New England Journal of Medicine, 2019, 381, 432-443.	13.9	545
4	GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts. Blood, 2019, 133, 697-709.	0.6	408
5	Guidelines for clinical protocols for chronic lymphocytic leukemia: Recommendations of the national cancer institute-sponsored working group. American Journal of Hematology, 1988, 29, 152-163.	2.0	389
6	Diagnostic criteria for monoclonal B-cell lymphocytosis. British Journal of Haematology, 2005, 130, 325-332.	1.2	360
7	Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood, 2017, 129, 3419-3427.	0.6	335
8	Diverse marrow stromal cells protect CLL cells from spontaneous and drug-induced apoptosis: development of a reliable and reproducible system to assess stromal cell adhesion-mediated drug resistance. Blood, 2009, 114, 4441-4450.	0.6	284
9	Relative value of ZAP-70, CD38, and immunoglobulin mutation status in predicting aggressive disease in chronic lymphocytic leukemia. Blood, 2008, 112, 1923-1930.	0.6	282
10	Combination chemoimmunotherapy with pentostatin, cyclophosphamide, and rituximab shows significant clinical activity with low accompanying toxicity in previously untreated B chronic lymphocytic leukemia. Blood, 2007, 109, 405-411.	0.6	278
11	Acalabrutinib Versus Ibrutinib in Previously Treated Chronic Lymphocytic Leukemia: Results of the First Randomized Phase III Trial. Journal of Clinical Oncology, 2021, 39, 3441-3452.	0.8	266
12	Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood, 2014, 124, 49-62.	0.6	244
13	Prospective Evaluation of Clonal Evolution During Long-Term Follow-Up of Patients With Untreated Early-Stage Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2006, 24, 4634-4641.	0.8	223
14	Prognosis at diagnosis: integrating molecular biologic insights into clinical practice for patients with CLL. Blood, 2004, 103, 1202-1210.	0.6	214
15	Circulating microvesicles in B-cell chronic lymphocytic leukemia can stimulate marrow stromal cells: implications for disease progression. Blood, 2010, 115, 1755-1764.	0.6	208
16	Chromosome anomalies detected by interphase fluorescence in situ hybridization: correlation with significant biological features of B-cell chronic lymphocytic leukaemia. British Journal of Haematology, 2003, 121, 287-295.	1.2	198
17	VEGF receptor phosphorylation status and apoptosis is modulated by a green tea component, epigallocatechin-3-gallate (EGCG), in B-cell chronic lymphocytic leukemia. Blood, 2004, 104, 788-794.	0.6	195
18	Diffuse large <scp>B</scp> â€cell lymphoma (<scp>R</scp> ichter syndrome) in patients with chronic lymphocytic leukaemia (CLL): a cohort study of newly diagnosed patients. British Journal of Haematology, 2013, 162, 774-782.	1.2	187

#	Article	IF	CITATIONS
19	Prognostic value of miR-155 in individuals with monoclonal B-cell lymphocytosis and patients with B chronic lymphocytic leukemia. Blood, 2013, 122, 1891-1899.	0.6	184
20	Analysis of clonal B-cell CD38 and immunoglobulin variable region sequence status in relation to clinical outcome for B-chronic lymphocytic leukaemia. British Journal of Haematology, 2001, 115, 854-861.	1.2	179
21	Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nature Genetics, 2013, 45, 868-876.	9.4	179
22	Comorbid conditions and survival in unselected, newly diagnosed patients with chronic lymphocytic leukemia. Leukemia and Lymphoma, 2008, 49, 49-56.	0.6	176
23	CD49d expression is an independent predictor of overall survival in patients with chronic lymphocytic leukaemia: a prognostic parameter with therapeutic potential. British Journal of Haematology, 2008, 140, 537-546.	1.2	152
24	De novo deletion 17p13.1 chronic lymphocytic leukemia shows significant clinical heterogeneity: the M. D. Anderson and Mayo Clinic experience. Blood, 2009, 114, 957-964.	0.6	150
25	Pentostatin, cyclophosphamide, and rituximab regimen in older patients with chronic lymphocytic leukemia. Cancer, 2007, 109, 2291-2298.	2.0	145
26	How we treat Richter syndrome. Blood, 2014, 123, 1647-1657.	0.6	145
27	LEF-1 is a prosurvival factor in chronic lymphocytic leukemia and is expressed in the preleukemic state of monoclonal B-cell lymphocytosis. Blood, 2010, 116, 2975-2983.	0.6	136
28	How I treat autoimmune hemolytic anemia. Blood, 2017, 129, 2971-2979.	0.6	134
29	Aberrant regulation of pVHL levels by microRNA promotes the HIF/VEGF axis in CLL B cells. Blood, 2009, 113, 5568-5574.	0.6	129
30	Brief Report: Natural History of Individuals With Clinically Recognized Monoclonal B-Cell Lymphocytosis Compared With Patients With Rai 0 Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2009, 27, 3959-3963.	0.8	123
31	Quantitative DNA Methylation Analysis Identifies a Single CpG Dinucleotide Important for ZAP-70 Expression and Predictive of Prognosis in Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2012, 30, 2483-2491.	0.8	120
32	Genome-wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. Blood, 2011, 117, 1911-1916.	0.6	118
33	Curcumin Inhibits Prosurvival Pathways in Chronic Lymphocytic Leukemia B Cells and May Overcome Their Stromal Protection in Combination with EGCG. Clinical Cancer Research, 2009, 15, 1250-1258.	3.2	114
34	Platelet-derived growth factor (PDGF)–PDGF receptor interaction activates bone marrow–derived mesenchymal stromal cells derived from chronic lymphocytic leukemia: implications for an angiogenic switch. Blood, 2010, 116, 2984-2993.	0.6	113
35	The novel receptor tyrosine kinase Axl is constitutively active in B-cell chronic lymphocytic leukemia and acts as a docking site of nonreceptor kinases: implications for therapy. Blood, 2011, 117, 1928-1937.	0.6	109
36	Identification of a global gene expression signature of B-chronic lymphocytic leukemia. Molecular Cancer Research, 2003, 1, 346-61.	1.5	108

#	Article	IF	CITATIONS
37	Age at diagnosis and the utility of prognostic testing in patients with chronic lymphocytic leukemia. Cancer, 2010, 116, 4777-4787.	2.0	107
38	B-cell count and survival: differentiating chronic lymphocytic leukemia from monoclonal B-cell lymphocytosis based on clinical outcome. Blood, 2009, 113, 4188-4196.	0.6	104
39	High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood, 2016, 128, 2931-2940.	0.6	102
40	Atrial fibrillation in patients with chronic lymphocytic leukemia (CLL). Leukemia and Lymphoma, 2017, 58, 1630-1639.	0.6	102
41	The prognostic significance of cytopenia in chronic lymphocytic leukaemia/small lymphocytic lymphoma. British Journal of Haematology, 2008, 141, 615-621.	1.2	101
42	Bone marrow stromal cells protect lymphoma Bâ€cells from rituximabâ€induced apoptosis and targeting integrin αâ€4â€Î²â€1 (VLAâ€4) with natalizumab can overcome this resistance. British Journal of Haematology, 2011, 155, 53-64.	1.2	99
43	Blood levels of immune cells predict survival in myeloma patients: results of an Eastern Cooperative Oncology Group phase 3 trial for newly diagnosed multiple myeloma patients. Blood, 2001, 98, 23-28.	0.6	94
44	Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia. Nature Communications, 2016, 7, 10933.	5.8	94
45	Long-term outcomes for ibrutinib–rituximab and chemoimmunotherapy in CLL: updated results of the E1912 trial. Blood, 2022, 140, 112-120.	0.6	93
46	Impact of Ibrutinib and Idelalisib on the Pharmaceutical Cost of Treating Chronic Lymphocytic Leukemia at the Individual and Societal Levels. Journal of Oncology Practice, 2015, 11, 252-258.	2.5	92
47	Chronic Lymphocytic Leukemia. Hematology American Society of Hematology Education Program, 2002, 2002, 193-213.	0.9	86
48	Methylprednisolone-rituximab is an effective salvage therapy for patients with relapsed chronic lymphocytic leukemia including those with unfavorable cytogenetic features. Leukemia and Lymphoma, 2007, 48, 2412-2417.	0.6	85
49	Autoimmune Complications in Chronic Lymphocytic Leukaemia (CLL). Best Practice and Research in Clinical Haematology, 2010, 23, 47-59.	0.7	84
50	The efficacy of ibrutinib in the treatment of Richter syndrome. Blood, 2015, 125, 1676-1678.	0.6	83
51	The PI3-Kinase Delta Inhibitor Idelalisib (GS-1101) Targets Integrin-Mediated Adhesion of Chronic Lymphocytic Leukemia (CLL) Cell to Endothelial and Marrow Stromal Cells. PLoS ONE, 2013, 8, e83830.	1.1	80
52	Long-term repair of T-cell synapse activity in a phase II trial of chemoimmunotherapy followed by lenalidomide consolidation in previously untreated chronic lymphocytic leukemia (CLL). Blood, 2013, 121, 4137-4141.	0.6	79
53	Hypogammaglobulinemia in newly diagnosed chronic lymphocytic leukemia: Natural history, clinical correlates, and outcomes. Cancer, 2015, 121, 2883-2891.	2.0	77
54	Common variation at 6p21.31 (BAK1) influences the risk of chronic lymphocytic leukemia. Blood, 2012, 120, 843-846.	0.6	76

#	Article	IF	CITATIONS
55	Biâ€directional activation between mesenchymal stem cells and CLL Bâ€cells: implication for CLL disease progression. British Journal of Haematology, 2009, 147, 471-483.	1.2	74
56	Validation of a new prognostic index for patients with chronic lymphocytic leukemia. Cancer, 2009, 115, 363-372.	2.0	72
57	Renal complications in chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis: the Mayo Clinic experience. Haematologica, 2015, 100, 1180-1188.	1.7	70
58	Autoimmune cytopenia in chronic lymphocytic leukemia/small lymphocytic lymphoma: changes in clinical presentation and prognosis. Leukemia and Lymphoma, 2009, 50, 1261-1268.	0.6	69
59	<scp>H</scp> odgkin transformation of chronic lymphocytic leukemia: <scp>I</scp> ncidence, outcomes, and comparison to <i>de novo</i> <scp>H</scp> odgkin lymphoma. American Journal of Hematology, 2015, 90, 334-338.	2.0	69
60	Bone biopsy derived marrow stromal elements rescue chronic lymphocytic leukemia B-cells from spontaneous and drug induced cell death and facilitates an "angiogenic switch― Leukemia Research, 2007, 31, 899-906.	0.4	67
61	Early treatment of highâ€risk chronic lymphocytic leukemia with alemtuzumab and rituximab. Cancer, 2008, 113, 2110-2118.	2.0	67
62	Relationship between coâ€morbidities at diagnosis, survival and ultimate cause of death in patients with chronic lymphocytic leukaemia (<scp>CLL</scp>): a prospective cohort study. British Journal of Haematology, 2017, 178, 394-402.	1.2	66
63	Clinical characteristics and outcomes of Richter transformation: experience of 204 patients from a single center. Haematologica, 2020, 105, 765-773.	1.7	64
64	Mcl-1 expression predicts progression-free survival in chronic lymphocytic leukemia patients treated with pentostatin, cyclophosphamide, and rituximab. Blood, 2009, 113, 535-537.	0.6	61
65	Common occurrence of monoclonal Bâ€cell lymphocytosis among members of highâ€risk CLL families. British Journal of Haematology, 2010, 151, 152-158.	1.2	61
66	Validation of ZAP-70 methylation and its relative significance in predicting outcome in chronic lymphocytic leukemia. Blood, 2014, 124, 42-48.	0.6	60
67	Circulating Blood B Cells in Multiple Myeloma: Analysis and Relationship to Circulating Clonal Cells and Clinical Parameters in a Cohort of Patients Entered on the Eastern Cooperative Oncology Group Phase III E9486 Clinical Trial. Blood, 1997, 90, 340-345.	0.6	59
68	Treatment of autoimmune cytopenia complicating progressive chronic lymphocytic leukemia/small lymphocytic lymphoma with rituximab, cyclophosphamide, vincristine, and prednisone. Leukemia and Lymphoma, 2010, 51, 620-627.	0.6	59
69	Targeted Axl Inhibition Primes Chronic Lymphocytic Leukemia B Cells to Apoptosis and Shows Synergistic/Additive Effects in Combination with BTK Inhibitors. Clinical Cancer Research, 2015, 21, 2115-2126.	3.2	59
70	The chronic lymphocytic leukemia international prognostic index predicts time to first treatment in early CLL: Independent validation in a prospective cohort of early stage patients. American Journal of Hematology, 2016, 91, 1090-1095.	2.0	58
71	Large-scale analysis of DNA methylation in chronic lymphocytic leukemia. Epigenomics, 2009, 1, 39-61.	1.0	57
72	ldentification of recurrent truncated <i><scp>DDX</scp>3X</i> mutations in chronic lymphocytic leukaemia. British Journal of Haematology, 2015, 169, 445-448.	1.2	54

#	Article	IF	CITATIONS
73	Targeting cancer-associated fibroblasts in the bone marrow prevents resistance to CART-cell therapy inÂmultiple myeloma. Blood, 2022, 139, 3708-3721.	0.6	53
74	The addition of interferon or high dose cyclophosphamide to standard chemotherapy in the treatment of patients with multiple myeloma. Cancer, 1999, 86, 957-968.	2.0	51
75	Interleukin 4 content in chronic lymphocytic leukaemia (CLL) B cells and blood CD8+ T cells from B-CLL patients: impact on clonal B-cell apoptosis. British Journal of Haematology, 2001, 112, 760-767.	1.2	48
76	A Randomized Phase III Study of Ibrutinib (PCI-32765)-Based Therapy Vs. Standard Fludarabine, Cyclophosphamide, and Rituximab (FCR) Chemoimmunotherapy in Untreated Younger Patients with Chronic Lymphocytic Leukemia (CLL): A Trial of the ECOG-ACRIN Cancer Research Group (E1912). Blood, 2018, 132, LBA-4-LBA-4.	0.6	48
77	The Clinical and Biologic Importance of Neovascularization and Angiogenic Signaling Pathways in Chronic Lymphocytic Leukemia. Seminars in Oncology, 2006, 33, 174-185.	0.8	47
78	Deep sequencing identifies genetic heterogeneity and recurrent convergent evolution in chronic lymphocytic leukemia. Blood, 2015, 125, 492-498.	0.6	47
79	Analysis of blood Tâ€cell cytokine expression in Bâ€chronic lymphocytic leukaemia: evidence for increased levels of cytoplasmic ILâ€4 in resting and activated CD8 T cells. British Journal of Haematology, 1997, 96, 733-735.	1.2	45
80	Epstein–Barr Virus MicroRNAs are Expressed in Patients with Chronic Lymphocytic Leukemia and Correlate with Overall Survival. EBioMedicine, 2015, 2, 572-582.	2.7	43
81	Leukemic extracellular vesicles induce chimeric antigen receptor TÂcell dysfunction in chronic lymphocytic leukemia. Molecular Therapy, 2021, 29, 1529-1540.	3.7	43
82	T-Cell Subpopulations in Multiple Myeloma: Correlation with Clinical Disease Status. British Journal of Haematology, 1981, 49, 629-634.	1.2	42
83	Realâ€world clinical experience in the Connect [®] chronic lymphocytic leukaemia registry: a prospective cohort study of 1494 patients across 199 US centres. British Journal of Haematology, 2016, 175, 892-903.	1.2	42
84	Rapid disease progression following discontinuation of ibrutinib in patients with chronic lymphocytic leukemia treated in routine clinical practice. Leukemia and Lymphoma, 2019, 60, 2712-2719.	0.6	42
85	Ofatumumabâ€based chemoimmunotherapy is effective and well tolerated in patients with previously untreated chronic lymphocytic leukemia (CLL). Cancer, 2013, 119, 3788-3796.	2.0	41
86	Adaphostin-induced apoptosis in CLL B cells is associated with induction of oxidative stress and exhibits synergy with fludarabine. Blood, 2005, 105, 2099-2106.	0.6	40
87	Ibrutinib restores immune cell numbers and function in first-line and relapsed/refractory chronic lymphocytic leukemia. Leukemia Research, 2020, 97, 106432.	0.4	40
88	Triggering interferon signaling in T cells with avadomide sensitizes CLL to anti-PD-L1/PD-1 immunotherapy. Blood, 2021, 137, 216-231.	0.6	40
89	IL-4 Biology: Impact on Normal and Leukemic CLL B Cells. Leukemia and Lymphoma, 2003, 44, 897-903.	0.6	39
90	Hematologist/oncologist diseaseâ€specific expertise and survival: Lessons from chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL). Cancer, 2012, 118, 1827-1837.	2.0	38

#	Article	IF	CITATIONS
91	Extramedullary chronic lymphocytic leukemia: Systematic analysis of cases reported between 1975 and 2012. Leukemia Research, 2014, 38, 299-303.	0.4	38
92	Dysregulated angiogenesis in B-chronic lymphocytic leukemia: Morphologic, immunohistochemical, and flow cytometric evidence. Diagnostic Pathology, 2008, 3, 16.	0.9	37
93	Autoimmune cytopenias in patients with chronic lymphocytic leukaemia treated with ibrutinib in routine clinical practice at an academic medical centre. British Journal of Haematology, 2018, 183, 421-427.	1.2	37
94	Design and validity of a clinic-based case-control study on the molecular epidemiology of lymphoma. International Journal of Molecular Epidemiology and Genetics, 2011, 2, 95-113.	0.4	37
95	The impact of race, ethnicity, age and sex on clinical outcome in chronic lymphocytic leukemia: a comprehensive Surveillance, Epidemiology, and End Results analysis in the modern era. Leukemia and Lymphoma, 2014, 55, 2778-2784.	0.6	36
96	The impact of dose modification and temporary interruption of ibrutinib on outcomes of chronic lymphocytic leukemia patients in routine clinical practice. Cancer Medicine, 2020, 9, 3390-3399.	1.3	36
97	Loss of TP53 is due to rearrangements involving chromosome region 17p10â^¼p12 in chronic lymphocytic leukemia. Cancer Genetics and Cytogenetics, 2006, 167, 177-181.	1.0	35
98	Progressive but previously untreated CLL patients with greater array CGH complexity exhibit a less durable response to chemoimmunotherapy. Cancer Genetics and Cytogenetics, 2010, 203, 161-168.	1.0	35
99	Pentostatin, Chlorambucil and Prednisone Therapy for B-Chronic Lymphocytic Leukemia: A Phase I/II Study by the Eastern Cooperative Oncology Group Study E1488. Leukemia and Lymphoma, 2004, 45, 79-84.	0.6	34
100	Analytical Considerations in Nanoscale Flow Cytometry of Extracellular Vesicles to Achieve Data Linearity. Thrombosis and Haemostasis, 2018, 118, 1612-1624.	1.8	34
101	Incidence of chronic lymphocytic leukemia and highâ€count monoclonal Bâ€cell lymphocytosis using the 2008 guidelines. Cancer, 2014, 120, 2000-2005.	2.0	33
102	Pharmacovigilance during ibrutinib therapy for chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) in routine clinical practice. Leukemia and Lymphoma, 2017, 58, 1376-1383.	0.6	33
103	Pentostatin and rituximab therapy for previously untreated patients with Bâ \in cell chronic lymphocytic leukemia. Cancer, 2010, 116, 2180-2187.	2.0	32
104	Sphingosine Kinase-1 Protects Multiple Myeloma from Apoptosis Driven by Cancer-Specific Inhibition of RTKs. Molecular Cancer Therapeutics, 2015, 14, 2303-2312.	1.9	32
105	Atrial fibrillation in patients with chronic lymphocytic leukemia (CLL) treated with ibrutinib: risk prediction, management, and clinical outcomes. Annals of Hematology, 2021, 100, 143-155.	0.8	32
106	Recurrent XPO1 mutations alter pathogenesis of chronic lymphocytic leukemia. Journal of Hematology and Oncology, 2021, 14, 17.	6.9	31
107	Ibrutinib and Rituximab Provides Superior Clinical Outcome Compared to FCR in Younger Patients with Chronic Lymphocytic Leukemia (CLL): Extended Follow-up from the E1912 Trial. Blood, 2019, 134, 33-33.	0.6	29
108	Developmental subtypes assessed by DNA methylation-iPLEX forecast the natural history of chronic lymphocytic leukemia. Blood, 2019, 134, 688-698.	0.6	26

#	Article	IF	CITATIONS
109	The humoral immune response to high-dose influenza vaccine in persons with monoclonal B-cell lymphocytosis (MBL) and chronic lymphocytic leukemia (CLL). Vaccine, 2021, 39, 1122-1130.	1.7	26
110	Akt inhibitor MKâ€⊋206 in combination with bendamustine and rituximab in relapsed or refractory chronic lymphocytic leukemia: Results from the N1087 alliance study. American Journal of Hematology, 2017, 92, 759-763.	2.0	25
111	T-helper phenotypes in the blood of myeloma patients on ECOG phase III trials E9486/E3A93. British Journal of Haematology, 1998, 100, 459-463.	1.2	24
112	CLL update 2022: A continuing evolution in care. Blood Reviews, 2022, 54, 100930.	2.8	24
113	<scp>CD</scp> 49d associates with nodal presentation and subsequent development of lymphadenopathy in patients with chronic lymphocytic leukaemia. British Journal of Haematology, 2017, 178, 99-105.	1.2	23
114	Prognostic Testing Patterns and Outcomes of Chronic Lymphocytic Leukemia Patients Stratified by Fluorescence In Situ Hybridization/Cytogenetics: A Real-world Clinical Experience in the Connect CLL Registry. Clinical Lymphoma, Myeloma and Leukemia, 2018, 18, 114-124.e2.	0.2	23
115	Association of polygenic risk score with the risk of chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis. Blood, 2018, 131, 2541-2551.	0.6	21
116	KRAS, NRAS, and BRAF mutations are highly enriched in trisomy 12 chronic lymphocytic leukemia and are associated with shorter treatment-free survival. Leukemia, 2019, 33, 2111-2115.	3.3	21
117	Bone marrow hematopoietic dysfunction in untreated chronic lymphocytic leukemia patients. Leukemia, 2019, 33, 638-652.	3.3	21
118	Risk of serious infection among individuals with and without low count monoclonal B-cell lymphocytosis (MBL). Leukemia, 2021, 35, 239-244.	3.3	21
119	Relationship of blood monocytes with chronic lymphocytic leukemia aggressiveness and outcomes: a multiâ€institutional study. American Journal of Hematology, 2016, 91, 687-691.	2.0	20
120	The CLL International Prognostic Index predicts outcomes in monoclonal B-cell lymphocytosis and Rai O CLL. Blood, 2021, 138, 149-159.	0.6	20
121	<scp>Akt</scp> inhibitor <scp>MK</scp> 2206 selectively targets <scp>CLL B</scp> â€cell receptor induced cytokines, mobilizes lymphocytes and synergizes with bendamustine to induce <scp>CLL</scp> apoptosis. British Journal of Haematology, 2014, 164, 146-150.	1.2	19
122	<i>IGH</i> translocations in chronic lymphocytic leukemia: Clinicopathologic features and clinical outcomes. American Journal of Hematology, 2019, 94, 338-345.	2.0	19
123	Differential Effect of Hemodialysis Membranes on Human Lymphocyte Natural Killer Function. Artificial Organs, 1987, 11, 165-167.	1.0	18
124	Combination Chemotherapy with Pentostatin, Cyclophosphamide and Rituximab Induces High Rate of Remissions Including Complete Responses and Achievement of Minimal Residual Disease in Previously Untreated B-Chronic Lymphocytic Leukemia Blood, 2004, 104, 339-339.	0.6	18
125	Ibrutinib Therapy for Chronic Lymphocytic Leukemia (CLL): An Analysis of a Large Cohort of Patients Treated in Routine Clinical Practice. Blood, 2015, 126, 2935-2935.	0.6	18
126	Tumor mutational load predicts time to first treatment in chronic lymphocytic leukemia (CLL) and monoclonal Bâ€cell lymphocytosis beyond the CLL international prognostic index. American Journal of Hematology, 2020, 95, 906-917.	2.0	17

#	Article	IF	CITATIONS
127	PD-1 Blockade with Pembrolizumab (MK-3475) in Relapsed/Refractory CLL Including Richter Transformation: An Early Efficacy Report from a Phase 2 Trial (MC1485). Blood, 2015, 126, 834-834.	0.6	17
128	The role of 18F-FDC-PET in detecting Richter's transformation of chronic lymphocytic leukemia in patients receiving therapy with a B-cell receptor inhibitor. Haematologica, 2020, 105, 2675-2678.	1.7	17
129	Ofatumumab monotherapy as a consolidation strategy in patients with previously untreated chronic lymphocytic leukaemia: a phase 2 trial. Lancet Haematology,the, 2016, 3, e407-e414.	2.2	16
130	Preneoplastic Alterations Define CLL DNA Methylome and Persist through Disease Progression and Therapy. Blood Cancer Discovery, 2021, 2, 54-69.	2.6	16
131	Natural history of monoclonal B-cell lymphocytosis among relatives in CLL families. Blood, 2021, 137, 2046-2056.	0.6	16
132	Measurable residual disease does not preclude prolonged progression-free survival in CLL treated with ibrutinib. Blood, 2021, 138, 2810-2827.	0.6	16
133	FISH Scoring for CLL: Comparison of Methods That Assess Round Versus Non-Round Nuclei,. Blood, 2011, 118, 3538-3538.	0.6	16
134	Tumor Suppressor Genes and Clonal Evolution in B-CLL. Leukemia and Lymphoma, 1995, 18, 41-49.	0.6	15
135	Outcomes of a large cohort of individuals with clinically ascertained high-count monoclonal B-cell lymphocytosis. Haematologica, 2018, 103, e237-e240.	1.7	15
136	Disease Flare During Temporary Interruption of Ibrutinib Therapy in Patients with Chronic Lymphocytic Leukemia. Oncologist, 2020, 25, 974-980.	1.9	15
137	A laboratory-based scoring system predicts early treatment in Rai O chronic lymphocytic leukemia. Haematologica, 2020, 105, 1613-1620.	1.7	15
138	Incidence and risk of tumor lysis syndrome in patients with relapsed chronic lymphocytic leukemia (CLL) treated with venetoclax in routine clinical practice. Leukemia and Lymphoma, 2020, 61, 2383-2388.	0.6	15
139	Purine Analogue-Based Chemotherapy Regimens for Patients With Previously Untreated B-Chronic Lymphocytic Leukemia. Seminars in Hematology, 2006, 43, S50-S54.	1.8	14
140	Expression of TCL-1 as a potential prognostic factor for treatment outcome in B-cell chronic lymphocytic leukemia. Leukemia Research, 2007, 31, 1737-1740.	0.4	14
141	Pretreatment angiogenic cytokines predict response to chemoimmunotherapy in patients with chronic lymphocytic leukaemia. British Journal of Haematology, 2009, 146, 660-664.	1.2	14
142	Analysis of racial variations in disease characteristics, treatment patterns, and outcomes of patients with chronic lymphocytic leukemia. American Journal of Hematology, 2016, 91, 677-680.	2.0	14
143	Distinct immune signatures in chronic lymphocytic leukemia and Richter syndrome. Blood Cancer Journal, 2021, 11, 86.	2.8	14
144	Development of a Clinically Relevant Reporter for Chimeric Antigen Receptor T-cell Expansion, Trafficking, and Toxicity. Cancer Immunology Research, 2021, 9, 1035-1046.	1.6	14

#	Article	IF	CITATIONS
145	Comprehensive Management of the CLL Patient: A Holistic Approach. Hematology American Society of Hematology Education Program, 2007, 2007, 324-331.	0.9	14
146	Proteomic Analysis of Chronic Lymphocytic Leukemia Cells Identifies Vimentin as a Novel Prognostic Factor for Aggressive Disease Blood, 2005, 106, 707-707.	0.6	14
147	A recombinant IL-4-Pseudomonas exotoxin inhibits protein synthesis and overcomes apoptosis resistance in human CLL B cells. Leukemia Research, 2005, 29, 1009-1018.	0.4	13
148	N9986: a phase II trial of thalidomide in patients with relapsed chronic lymphocytic leukemia. Leukemia and Lymphoma, 2009, 50, 588-592.	0.6	13
149	Liver dysfunction in chronic lymphocytic leukemia: Prevalence, outcomes, and pathological findings. American Journal of Hematology, 2017, 92, 1362-1369.	2.0	13
150	SphK1 inhibitor potentiates the anti ancer effect of <scp>EGCG</scp> on leukaemia cells. British Journal of Haematology, 2017, 178, 155-158.	1.2	13
151	Chronic lymphocytic leukemia international prognostic index: a systematic review and meta-analysis. Blood, 2018, 131, 365-368.	0.6	13
152	Humoral and cellular immune responses to recombinant herpes zoster vaccine in patients with chronic lymphocytic leukemia and monoclonal B cell lymphocytosis. American Journal of Hematology, 2022, 97, 90-98.	2.0	13
153	Monoclonal B-cell lymphocytosis: update on diagnosis, clinical outcome, and counseling. Clinical Advances in Hematology and Oncology, 2013, 11, 720-9.	0.3	13
154	Prognostic factors in chronic lymphocytic leukemia. Current Hematologic Malignancy Reports, 2007, 2, 49-55.	1.2	12
155	Management of patients with chronic lymphocytic leukemia with a high risk of adverse outcome: the Mayo Clinic approach. Leukemia and Lymphoma, 2011, 52, 1425-1434.	0.6	12
156	Tris (dibenzylideneacetone) dipalladium: a small-molecule palladium complex is effective in inducing apoptosis in chronic lymphocytic leukemia B-cells. Leukemia and Lymphoma, 2016, 57, 2409-2416.	0.6	12
157	Early progression of disease as a predictor of survival in chronic lymphocytic leukemia. Blood Advances, 2017, 1, 2433-2443.	2.5	12
158	The Connect CLL Registry: final analysis of 1494 patients with chronic lymphocytic leukemia across 199 US sites. Blood Advances, 2020, 4, 1407-1418.	2.5	12
159	Targeting Cancer Associated Fibroblasts in the Bone Marrow Prevents Resistance to Chimeric Antigen Receptor T Cell Therapy in Multiple Myeloma. Blood, 2019, 134, 865-865.	0.6	12
160	GM-CSF disruption in CART cells modulates T cell activation and enhances CART cell anti-tumor activity. Leukemia, 2022, 36, 1635-1645.	3.3	12
161	Renal insufficiency is an independent prognostic factor in patients with chronic lymphocytic leukemia. Haematologica, 2017, 102, e22-e25.	1.7	11
162	Cumulative experience and long term follow-up of pentostatin-based chemoimmunotherapy trials for patients with chronic lymphocytic leukemia. Expert Review of Hematology, 2018, 11, 337-349.	1.0	11

#	Article	IF	CITATIONS
163	ZAP-70 Expression Associated with Activation in Normal Human B Cells and B Cell Chronic Lymphocytic Leukemia Blood, 2004, 104, 2794-2794.	0.6	11
164	Recognizing Unmet Need in the Era of Targeted Therapy for CLL/SLL: "What's Past Is Prologue― (Shakespeare). Clinical Cancer Research, 2022, 28, 603-608.	3.2	11
165	Sequential Phenotyping of Myeloma Patients on Chemotherapy: Persistence of Activated T-cells and Natural Killer Cells. Leukemia and Lymphoma, 1995, 16, 351-354.	0.6	10
166	Chronic lymphocytic leukemia: Biology and current treatment. Current Oncology Reports, 2007, 9, 345-352.	1.8	10
167	Controversies in the front-line management of chronic lymphocytic leukemia. Leukemia Research, 2008, 32, 679-688.	0.4	10
168	Addition of granulocyte macrophage colony stimulating factor does not improve response to early treatment of high-risk chronic lymphocytic leukemia with alemtuzumab and rituximab. Leukemia and Lymphoma, 2013, 54, 476-482.	0.6	10
169	Chemoimmunotherapy Is Not Dead Yet in Chronic Lymphocytic Leukemia. Journal of Clinical Oncology, 2017, 35, 2989-2992.	0.8	10
170	Polygenic risk score and risk of monoclonal B-cell lymphocytosis in caucasians and risk of chronic lymphocytic leukemia (CLL) in African Americans. Leukemia, 2022, 36, 119-125.	3.3	10
171	Critical Signal Transduction Pathways in CLL. Advances in Experimental Medicine and Biology, 2013, 792, 215-239.	0.8	9
172	Association of elevated serumfree light chains with chronic lymphocytic leukemia and monoclonal B-cell lymphocytosis. Blood Cancer Journal, 2019, 9, 59.	2.8	9
173	Addition of venetoclax at time of progression in ibrutinibâ€ŧreated patients with chronic lymphocytic leukemia: Combination therapy to prevent ibrutinib flare. American Journal of Hematology, 2020, 95, E57-E60.	2.0	9
174	SIRT3 overexpression and epigenetic silencing of catalase regulate ROS accumulation in CLL cells activating AXL signaling axis. Blood Cancer Journal, 2021, 11, 93.	2.8	9
175	Targeting of CD19 By Tafasitamab Does Not Impair CD19 Directed Chimeric Antigen Receptor T Cell Activity in Vitro. Blood, 2019, 134, 2859-2859.	0.6	9
176	Chronic lymphocytic leukemia (CLL) with Reed–Sternberg-like cells vs Classic Hodgkin lymphoma transformation of CLL: does this distinction matter?. Blood Cancer Journal, 2022, 12, 18.	2.8	9
177	The Emerging Role of Ofatumumab in the Treatment of Chronic Lymphocytic Leukemia. Clinical Medicine Insights: Oncology, 2011, 5, CMO.S4087.	0.6	8
178	Predictive value of the <scp>CLL</scp> â€ <scp>IPI</scp> in <scp>CLL</scp> patients receiving chemoâ€immunotherapy as firstâ€ine treatment. European Journal of Haematology, 2018, 101, 703-706.	1.1	8
179	The Importance of Pharmacovigilance during Ibrutinib Therapy for Chronic Lymphocytic Leukemia (CLL) in Routine Clinical Practice. Blood, 2015, 126, 717-717.	0.6	8
180	PD-1 Blockade with Pembrolizumab in Relapsed CLL Including Richter's Transformation: An Updated Report from a Phase 2 Trial (MC1485). Blood, 2016, 128, 4392-4392.	0.6	8

Neil E Kay

#	Article	IF	CITATIONS
181	Chronic lymphocytic leukemia: current and emerging treatment approaches. Clinical Advances in Hematology and Oncology, 2006, 4, 1-10; quiz 11-2.	0.3	8
182	Venetoclax treatment of patients with relapsed T-cell prolymphocytic leukemia. Blood Cancer Journal, 2021, 11, 47.	2.8	7
183	Pathogenesis of Impaired Cellular Immune Function in CLL. , 2004, , 109-121.		7
184	Ibrutinib-Based Therapy Improves Anti-Tumor T Cell Killing Function Allowing Effective Pairing with Anti-PD-L1 Immunotherapy Compared to Traditional FCR Chemoimmunotherapy; Implications for Therapy and Correlative Immune Functional Data from the Phase III E1912 Trial. Blood, 2018, 132, 236-236.	0.6	7
185	A randomized phase II trial comparing chemoimmunotherapy with or without bevacizumab in previously untreated patients with chronic lymphocytic leukemia. Oncotarget, 2016, 7, 78269-78280.	0.8	7
186	Use of Artificial Intelligence Electrocardiography to Predict Atrial Fibrillation (AF) in Patients with Chronic Lymphocytic Leukemia (CLL). Blood, 2020, 136, 50-51.	0.6	7
187	Single-cell analysis reveals immune dysfunction from the earliest stages of CLL that can be reversed by ibrutinib. Blood, 2022, 139, 2252-2256.	0.6	7
188	<i>Letter to the Editor:</i> Community-Based Phase II Trial of PCR for CLL/SLL Patients. Cancer Biotherapy and Radiopharmaceuticals, 2007, 22, 713-714.	0.7	6
189	Angiogenesis revisited in CLL. Leukemia Research, 2007, 31, 1459-1460.	0.4	6
190	Pentostatin, Cyclophosphamide, and Rituximab Followed by Alemtuzumab for Relapsed or Refractory Chronic Lymphocytic Leukemia: A Phase 2 Trial of the ECOG-Acrin Cancer Research Group (E2903). Acta Haematologica, 2019, 142, 224-232.	0.7	6
191	Role of long non-coding RNAs in disease progression of early stage unmutated chronic lymphocytic leukemia. Oncotarget, 2019, 10, 60-75.	0.8	6
192	Chronic lymphocytic leukemia (CLL) risk is mediated by multiple enhancer variants within CLL risk loci. Human Molecular Genetics, 2020, 29, 2761-2774.	1.4	6
193	Cause of death in patients with newly diagnosed chronic lymphocytic leukemia (CLL) stratified by the CLL-International Prognostic Index. Blood Cancer Journal, 2021, 11, 140.	2.8	6
194	Improved Anti-Tumor Response of Chimeric Antigen Receptor T Cell (CART) Therapy after GM-CSF Inhibition Is Mechanistically Supported By a Novel Direct Interaction of GM-CSF with Activated Carts. Blood, 2019, 134, 3868-3868.	0.6	6
195	Early intervention in asymptomatic chronic lymphocytic leukemia. Clinical Advances in Hematology and Oncology, 2021, 19, 92-103.	0.3	6
196	Activation of human peripheral blood T cells does not lead to increased P-glycoprotein expression. Journal of Clinical Immunology, 1999, 19, 239-246.	2.0	5
197	Acquired chromosomal anomalies in chronic lymphocytic leukemia patients compared with more than 50,000 quasi-normal participants. Cancer Genetics, 2014, 207, 19-30.	0.2	5
198	High prevalence of monoclonal gammopathy among patients with warm autoimmune hemolytic anemia. American Journal of Hematology, 2017, 92, E164-E166.	2.0	5

#	Article	IF	CITATIONS
199	Reasons for initiation of treatment and predictors of response for patients with Rai stage 0/1 chronic lymphocytic leukemia (CLL) receiving first-line therapy: an analysis of the Connect [®] CLL cohort study. Leukemia and Lymphoma, 2018, 59, 2327-2335.	0.6	5
200	Cyclophosphamide Remains An Important Component of Treatment in CLL Patients Receiving Pentostatin and Rituximab Based Chemoimmunotherapy. Blood, 2008, 112, 43-43.	0.6	5
201	Hodgkin Transformation Of Chronic Lymphocytic Leukemia (CLL): Mayo Clinic Experience. Blood, 2013, 122, 1642-1642.	0.6	5
202	Atrial Fibrillation in Patients with Chronic Lymphocytic Leukemia (CLL). Blood, 2015, 126, 2950-2950.	0.6	5
203	Circulating Blood B Cells in Multiple Myeloma: Analysis and Relationship to Circulating Clonal Cells and Clinical Parameters in a Cohort of Patients Entered on the Eastern Cooperative Oncology Group Phase III E9486 Clinical Trial. Blood, 1997, 90, 340-345.	0.6	5
204	T-cell abnormalities in patients with chronic lymphocytic leukemia. Leukemia and Lymphoma, 2006, 47, 1197-1198.	0.6	4
205	Delineation of clinical and biological factors associated with cutaneous squamous cell carcinoma among patients with chronic lymphocytic leukemia. Journal of the American Academy of Dermatology, 2020, 83, 1581-1589.	0.6	4
206	Chronic lymphocytic leukemia in 2020: a surfeit of riches?. Leukemia, 2020, 34, 1979-1983.	3.3	4
207	Chronic lymphocytic leukemia B-cell-derived TNFα impairs bone marrow myelopoiesis. IScience, 2021, 24, 101994.	1.9	4
208	Aspirin and other nonsteroidal antiâ€inflammatory drugs, statins and risk of non†Hodgkin lymphoma. International Journal of Cancer, 2021, 149, 535-545.	2.3	4
209	Measurable residual disease testing in chronic lymphocytic leukaemia: hype, hope neither or both?. Leukemia, 2021, 35, 3364-3370.	3.3	4
210	Alemtuzumab and Rituximab for Therapy of Patents with Early Stage High Risk CLL: Report of a Planned Interim Analysis Blood, 2006, 108, 2829-2829.	0.6	4
211	Outcomes Of Chronic Lymphocytic Leukemia Patients With Richter Syndrome. Blood, 2013, 122, 4179-4179.	0.6	4
212	Disease Progression and Complications Are the Main Cause of Death in Patients with Chronic Lymphocytic Leukemia (CLL) Independent of Age and Comorbidities at Diagnosis. Blood, 2015, 126, 5265-5265.	0.6	4
213	Outcomes of Ibrutinib Therapy By Age in Patients with CLL/SLL: Analyses from Phase 3 Trial Data (RESONATE and RESONATE-2). Blood, 2016, 128, 2041-2041.	0.6	4
214	Skin Cancers Among Chronic Lymphocytic Leukemia (CLL) Patients - the Effect of UV Radiation and CLL Clinical Characteristics. Blood, 2016, 128, 4772-4772.	0.6	4
215	Comparative Evaluation of Prognostic Factors That Assess the Natural History of Chronic Lymphocytic Leukemia. Blood, 2016, 128, 968-968.	0.6	4
216	Molecular Mechanisms Involved in Homing and Migration of B-Chronic Lymphocytic Leukemia (CLL) in Response to CXCR4 Stimulation and Downstream Activation of the PI3K Pathway Blood, 2004, 104, 1909-1909.	0.6	4

#	Article	IF	CITATIONS
217	MBL and MoBL - Response to Ziegler-Heitbrock. British Journal of Haematology, 2005, 130, 795-796.	1.2	3
218	Combination therapies for previously untreated CLL. Lancet, The, 2007, 370, 197-198.	6.3	3
219	CGH Protocols: Chronic Lymphocytic Leukemia. Methods in Molecular Biology, 2013, 973, 87-98.	0.4	3
220	Epigenetic alteration contributes to the transcriptional reprogramming in T-cell prolymphocytic leukemia. Scientific Reports, 2021, 11, 8318.	1.6	3
221	GM-CSF Blockade during Chimeric Antigen Receptor T Cell Therapy Reduces Cytokine Release Syndrome and Neurotoxicity and May Enhance Their Effector Functions. Blood, 2018, 132, 961-961.	0.6	3
222	A Randomized Phase 2 Study Comparing Acalabrutinib with or without Obinutuzumab in the Treatment of Early Stage High Risk Patients with Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Lymphoma (SLL). Blood, 2019, 134, 4306-4306.	0.6	3
223	BTK and/or PLCC2 Mutations in Patients with Chronic Lymphocytic Leukemia (CLL) Treated with Ibrutinib: Characteristics and Outcomes at the Time of Progression. Blood, 2019, 134, 3050-3050.	0.6	3
224	Frequency of Clonal Evolution by FISH in Untreated, Early Stage Patients with CLL: A Prospective, Longitudinal Study with Long Clinical Follow-Up Blood, 2005, 106, 2098-2098.	0.6	3
225	The Pentostatin, Cyclophosphamide, and Rituximab Regimen (PCR) Is Highly Active and Well Tolerated Regardless of Patient Age, Creatinine Clearance, and Performance Status: Analysis of a Multi-Center Phase II Trial Blood, 2006, 108, 36-36.	0.6	3
226	Chronic Lymphocytic Leukemia Patients with IGHV Genes Carrying Only Silent Mutations Have A Longer Time From Diagnosis to Initial Therapy Than Patients Expressing B-Cell Receptors with No Somatic Mutations. Blood, 2011, 118, 288-288.	0.6	3
227	Pure Red Cell Aplasia (PRCA) in Chronic Lymphocytic Leukemia (CLL): Etiology, Therapy, and Outcomes. Blood, 2015, 126, 4169-4169.	0.6	3
228	Prevalence of Low Count (LC) Monoclonal B Cell Lymphocytosis (MBL) and Serious Infections in a Population-Based Cohort of U.S. Adults Participating in a Large Bio-Repository. Blood, 2017, 130, 831-831.	0.6	3
229	Variation in Health-Related Quality of Life by Age Among Patients with Chronic Lymphocytic Leukemia. Blood, 2011, 118, 2085-2085.	0.6	3
230	Favorable Modulation of Chimeric Antigen Receptor T Cells Safety and Efficacy By the Non-Covalent BTK Inhibitor Vecabrutinib. Blood, 2021, 138, 906-906.	0.6	3
231	Genetic Determinants and Evolutionary History of Richter's Syndrome. Blood, 2020, 136, 47-48.	0.6	3
232	Circulating endothelial cells in chronic lymphocytic leukemia: more evidence of disturbed angiogenesis. Leukemia and Lymphoma, 2009, 50, 8-9.	0.6	2
233	B-cell prolymphocytic leukemia has 3 subsets. Blood, 2019, 134, 1777-1778.	0.6	2
234	Longitudinal healthâ€related quality of life in firstâ€line treated patients with chronic lymphocytic leukemia: Results from the Connect ® CLL Registry. EJHaem, 2020, 1, 188-198.	0.4	2

#	Article	IF	CITATIONS
235	Development of a Sensitive and Efficient Reporter Platform for the Detection of Chimeric Antigen Receptor T Cell Expansion, Trafficking, and Toxicity. Blood, 2019, 134, 53-53.	0.6	2
236	Hypoxia Inducible Factor-1α Is over Expressed in CLL B Cells Because of an Impaired Proteasome Pathway Associated with Defective Interaction with von Hippel-Landau Protein Blood, 2005, 106, 2115-2115.	0.6	2
237	The Green Tea Extract Epigallocatechin Induces In Vitro Cell Death in Primary Human Lymphoma Cells through an ROS Dependent Mechanism Blood, 2006, 108, 234-234.	0.6	2
238	Characteristics of Familial CLL Evaluated in the CLL Research Consortium Cohort. Blood, 2008, 112, 3125-3125.	0.6	2
239	Family-Associated Monoclonal B Lymphocytosis Is Commonly Oligoclonal and Expresses Markers Associated with Adverse Risk in CLL. Blood, 2008, 112, 3144-3144.	0.6	2
240	Lenalidomide Consolidation Appears to Prolong Time to Retreatment After First-Line Chemoimmunotherapy for Patients with Previously Untreated CLL,. Blood, 2011, 118, 3899-3899.	0.6	2
241	Hypogammaglobulinemia In Patients With Previously Untreated Chronic Lymphocytic Leukemia: Clinical Correlates and Outcomes. Blood, 2013, 122, 4178-4178.	0.6	2
242	Serum B-cell maturation antigen as a prognostic marker for untreated chronic lymphocytic leukemia Journal of Clinical Oncology, 2019, 37, 7525-7525.	0.8	2
243	Cytogenetic Analysis of Normal Human B Cells Following CpG Stimulation: Implications for Interpretation of CpG Induced CLL Metaphase Analysis. Blood, 2008, 112, 3124-3124.	0.6	2
244	Aberrant Regulation of the LEF-1 Locus in Monoclonal B Cell Lymphocytosis (MBL) and Chronic Lymphocytic Leukemia (CLL): A Possible Role for Epigenetic Regulation Blood, 2009, 114, 669-669.	0.6	2
245	PD-1 Overexpression in Richter's Transformation (RT) and Aggressive Chronic Lymphocytic Leukemia (CLL) after Progression on Ibrutinib Increases Bcl-2 Expression Via Akt/mTOR Pathway. Blood, 2018, 132, 586-586.	0.6	2
246	Differential transcriptomic profiling in ibrutinibâ€naÃ⁻ve versus ibrutinibâ€resistant Richter syndrome. Hematological Oncology, 2022, 40, 302-306.	0.8	2
247	B cell receptor signaling drives APOBEC3 expression via direct enhancer regulation in chronic lymphocytic leukemia B cells. Blood Cancer Journal, 2022, 12, .	2.8	2
248	Reply to R.S. Go. Journal of Clinical Oncology, 2009, 27, e45-e45.	0.8	1
249	Biologic agent activity in chronic lymphocytic leukemia: a framework for future therapies. Leukemia and Lymphoma, 2011, 52, 374-386.	0.6	1
250	Predicting Clinical Outcome in B-Chronic Lymphocytic Leukemia. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2012, , 394-398.	1.8	1
251	A novel method for analysis of human T cell repertoires by real-time PCR. Journal of Immunological Methods, 2014, 412, 24-34.	0.6	1
252	Reply to S. Opat et al. Journal of Clinical Oncology, 2017, 35, 4094-4095.	0.8	1

#	Article	IF	CITATIONS
253	Upregulation of AXL and \hat{l}^2 -catenin in chronic lymphocytic leukemia cells cultured with bone marrow stroma cells is associated with enhanced drug resistance. Blood Cancer Journal, 2021, 11, 37.	2.8	1
254	The prognostic significance of <scp>del6q23</scp> in chronic lymphocytic leukemia. American Journal of Hematology, 2021, 96, E203-E206.	2.0	1
255	Comprehensive Management of the CLL Patient: A Holistic Approach. Hematology American Society of Hematology Education Program, 2007, 2007, 324-331.	0.9	1
256	Axl-RTK Inhibition Modulates T Cell Functions and Synergizes with Chimeric Antigen Receptor T Cell Therapy in B Cell Malignancies. Blood, 2018, 132, 728-728.	0.6	1
257	Circulating Extracellular Vesicles Induce Chimeric Antigen Receptor T Cell Dysfunction in Chronic Lymphocytic Leukemia (CLL). Blood, 2019, 134, 679-679.	0.6	1
258	Venetoclax Has Modest Efficacy in the Treatment of Patients with Relapsed T-Cell Prolymphocytic Leukemia. Blood, 2020, 136, 39-40.	0.6	1
259	Smudge Cells on Routine Blood Smear Predict Clinical Outcome in Chronic Lymphocytic Leukemia: A Universally Available Prognostic Test Blood, 2006, 108, 2785-2785.	0.6	1
260	Alemtuzumab and Rituximab for Initial Treatment of High Risk, Early Stage Chronic Lymphocytic Leukemia (CLL) Blood, 2007, 110, 2050-2050.	0.6	1
261	CD5+ Chronic B-Cell Lymphoproliferative Disorders Could Contain a Novel Disease Entity Blood, 2008, 112, 2065-2065.	0.6	1
262	Pentostatin, Alemtuzumab, and Low Dose Rituximab Is Effective Therapy for Relapsed/Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL). Blood, 2011, 118, 1790-1790.	0.6	1
263	Resistance to Complement Dependent Cytotoxicity in CLL Cells From Patients Treated with Ofatumumab. Blood, 2011, 118, 2836-2836.	0.6	1
264	Axl Receptor Tyrosine Kinase Signaling Pathway and the p53 Tumor Suppressor Protein Exist In A Novel Regulatory Loop In B-Cell Chronic Lymphocytic Leukemia Cells. Blood, 2011, 118, 799-799.	0.6	1
265	High-Level Expression of ROR1 Associates with Early Disease Progression in Patients with Chronic Lymphocytic Leukemia. Blood, 2015, 126, 1713-1713.	0.6	1
266	Characteristics and Outcome of Direct Antiglobulin Test-Negative Hemolytic Anemia: A Case Series. Blood, 2016, 128, 2451-2451.	0.6	1
267	Role of Lncrnas in Early Stage Immunoglobulin Heavy Chain Variable Region (IGHV) Unmutated CLL Disease Progression. Blood, 2016, 128, 4364-4364.	0.6	1
268	CLL B Cell Interaction with Bone Biopsy Generated Marrow Stromal Elements Enhances Their Apoptosis Resistance in Association with an Angiogenic Switch Blood, 2004, 104, 1914-1914.	0.6	1
269	Leukemic B Cells from CD38 Positive but Not CD38 Negative B-CLL Patients Express Heightened Levels of Cell Cycle Related Genes Blood, 2004, 104, 4809-4809.	0.6	1
270	Tumor Cells Resistant to Alemtuzumab Complement Mediated Cytotoxicity in Patients with High Risk Previously Untreated Early Stage CLL: A Possible Mechanism of Treatment Failure Blood, 2005, 106, 2973-2973.	0.6	1

#	Article	IF	CITATIONS
271	Motexafin Gadolinium (MGd) Has Clinical Activity in Relapsed/Refractory Low Grade Lymphomas (LG) and Relapsed/Refractory Chronic Lymphocytic Leukemia (CLL) Blood, 2005, 106, 4758-4758.	0.6	1
272	Crosstalk between Chronic Lymphocytic Leukemia (CLL) B-Cells and Marrow Stromal Cells: Implication for CLL B-Cell Activation and Survival Blood, 2007, 110, 337-337.	0.6	1
273	De Novo Deletion 17p13.1 Chronic Lymphocytic Leukemia Shows Significant Clinical Heterogeneity: The MD Anderson/Mayo Clinic Experience Blood, 2008, 112, 1056-1056.	0.6	1
274	Overexpression of the LEF-1 and TCF4 Transcription Factors in B-CLL: Further Evidence for a Role of the Wnt Signaling Pathway in B-CLL Biology and Leukemogenesis. Blood, 2008, 112, 544-544.	0.6	1
275	Ofatumumab Based Chemoimmunotherapy (CIT) for Patients with Previously Untreated CLL,. Blood, 2011, 118, 3898-3898.	0.6	1
276	Alemtuzumab Use and Survival After Reduced Intensity Allogeneic Stem Cell Transplantation in High-Risk Chronic Lymphocytic Leukemia (CLL),. Blood, 2011, 118, 4152-4152.	0.6	1
277	TRIS (DIBENZYLIDENEACETONE) Dipalladium a Small-Molecule Palladium Complex Is Effective in the Induction of Apoptosis for B-Chronic Lymphocytic Leukemia B-Cells. Blood, 2011, 118, 2851-2851.	0.6	1
278	The Impact of Race, Age, and Sex in Chronic Lymphocytic Leukemia (CLL): A Comprehensive SEER Analysis in the Pre and Post Rituximab (R) Eras Blood, 2012, 120, 2877-2877.	0.6	1
279	Sensitivity of Ibrutinib Exposed Chronic Lymphocytic Leukemia B-Cells to Inhibition of Axl Receptor Tyrosine Kinase. Blood, 2016, 128, 2020-2020.	0.6	1
280	Liver Biopsy in Patients with Chronic Lymphocytic Leukemia: Indications and Pathological Findings. Blood, 2016, 128, 5592-5592.	0.6	1
281	Factors That Influence Treatment Decision-Making: Perspectives of 1147 Chronic Lymphocytic Leukemia (CLL) Patients in the United States. Blood, 2018, 132, 4414-4414.	0.6	1
282	Vaccination History and Risk of Lymphoma and Its Major Subtypes. Cancer Epidemiology Biomarkers and Prevention, 2021, , cebp.0383.2021.	1.1	1
283	Vesicular Stomatitis Virus (VSV) Engineered to Express CD19 Stimulates Anti-CD19 Chimeric Antigen Receptor Modified T Cells and Promotes Their Anti-Tumor Effects. Blood, 2020, 136, 30-31.	0.6	1
284	Central Nervous System (CNS) Involvement of Richter Transformation: A Single Center Experience. Blood, 2020, 136, 3-4.	0.6	1
285	Distinct Gene Expression Signatures in Patients with Richter's Syndrome and Chronic Lymphocytic Leukemia with Prior Exposure to Ibrutinib. Blood, 2020, 136, 30-31.	0.6	1
286	Genomic Profiling Reveals Molecular Heterogeneity in Patients with Richter's Syndrome (RS) and Progressive Chronic Lymphocytic Leukemia (CLL). Blood, 2020, 136, 16-17.	0.6	1
287	Immunogenicity of a Recombinant Herpes Zoster Vaccine in Patients with Chronic Lymphocytic Leukemia. Blood, 2020, 136, 49-50.	0.6	1
288	Associations of history of vaccination and hospitalization due to infection with risk of monoclonal B-cell lymphocytosis. Leukemia, 2022, , .	3.3	1

#	Article	IF	CITATIONS
289	Serum B-Cell maturation antigen is an independent prognostic marker in previously untreated chronic lymphocytic leukemia. Experimental Hematology, 2022, 111, 32-40.	0.2	1
290	Usefulness of Risk Stratification in the Treatment of Patients with Chronic Lymphocytic Leukemia. Clinical Leukemia, 2008, 2, 46-54.	0.2	0
291	Associations of DNA Repair Gene Polymorphisms in XRCC1 and ERCC2 with Clinical Outcome in ECOG Trial E9486 Blood, 2004, 104, 1475-1475.	0.6	0
292	Elevated BLyS Levels in Patients with Familial and Sporadic B-CLL: Correlation with BLyS Polymorphisms Blood, 2004, 104, 964-964.	0.6	0
293	Loss of p53 Is Due to Rearrangements in a ~6,400 kb Region of Low Copy Repeats near the Centromere of Chromosome 17 in Chronic Lymphocytic Leukemia (B-CLL) Blood, 2005, 106, 3255-3255.	0.6	0
294	Molecular and Clinical Analysis of a Midwest Cohort of B-CLL Patients Utilizing the Immunoglobulin VH 1-69 Gene Blood, 2005, 106, 5016-5016.	0.6	0
295	Long Term Follow up of Allogeneic Hematopoietic Stem Cell Transplantation (ASCT) in Chronic Lymphocytic Leukemia (CLL) Blood, 2005, 106, 5420-5420.	0.6	0
296	Targeting Vla-4 Reduces Cell Adhesion Mediated Drug Resistance in Chronic Lymphocytic Leukemia: Rationale for Anti Vla-4 Therapy Blood, 2005, 106, 1182-1182.	0.6	0
297	Submicroscopic Interstitial Deletions in 13q14 Are Detectable in Metaphase Cells by Fluorescence In Situ Hybridization (FISH) with D13S319 in Chronic Lymphocytic Leukemia (B-CLL) Blood, 2005, 106, 3278-3278.	0.6	0
298	Elevated HIF-1α Levels in CLL B Cells May Explain Their Autocrine VEGF Secretion Blood, 2006, 108, 583-583.	0.6	0
299	Inhibition of GSK-3 Induces Apoptosis of CLL Cells by Abrogating NFkB Nuclear Activity Blood, 2006, 108, 2797-2797.	0.6	0
300	A Large Scale Evaluation of Genetic Variation in Immune and Inflammation Genes and Risk of Non-Hodgkin Lymphoma Blood, 2006, 108, 817-817.	0.6	0
301	Neuropilin-1 Receptor (NRP-1) Occupancy Induces Cell Death in Primary Chronic Lymphocytic Leukemia (CLL) B Cells Blood, 2006, 108, 586-586.	0.6	0
302	Expression and Functional Analysis of Activation-Induced Deaminase (AID) in Normal Human B Lymphocytes Blood, 2006, 108, 934-934.	0.6	0
303	D Gene Usage Predicts Clinical Outcome in Patients with Low Rai Risk Unmutated B-CLL Blood, 2006, 108, 2779-2779.	0.6	0
304	The Prognostic Significance of Cytopenia in Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL) Blood, 2007, 110, 746-746.	0.6	0
305	Dietary Products Induce Apoptosis in CLL B Cells and Reveal Potential as a Therapeutic Combination That Can Overcome Stromal Cell Mediated Protection Blood, 2007, 110, 3130-3130.	0.6	0
306	Characterization of Microvesicles in B-Cell Chronic Lymphocytic Leukemia (CLL): A Potential Mediator in CLL B Cell Disease Progression? Blood, 2007, 110, 747-747.	0.6	0

#	Article	IF	CITATIONS
307	Statin Use and Risk of Non-Hodgkin Lymphoma (NHL): Preliminary Results from the Mayo Clinic Case-Control Study Blood, 2007, 110, 2615-2615.	0.6	0
308	Platelet-Derived Growth Factor (PDGF) Secreted by Chronic Lymphocytic Leukemic B-Cells Is Capable of Regulating the Activation and Function of Mesenchymal Stem Cells: Implications for Leukemic Cell/Stromal Cell Crosstalk. Blood, 2008, 112, 355-355.	0.6	0
309	Validation of CLL FISH Panel Scoring by Members of the Chronic Lymphocytic Leukemia Research Consortium Blood, 2008, 112, 1067-1067.	0.6	0
310	Higher Intakes of Vegetables, Vitamin E, Manganese and Zinc Are Associated with a Lower Risk of Non-Hodgkin Lymphoma (NHL): Results from a Case-Control Study. Blood, 2008, 112, 3771-3771.	0.6	0
311	Whole Genome Copy Number Variation Analysis of Chronic Lymphocytic Leukemia (CLL) Cells From Early-Intermediate Stage, High Risk CLL Patients Prior to First Treatment Reveals New Loss of Heterozygosity and Duplication Events in the CLL Genome Blood, 2009, 114, 1265-1265.	0.6	0
312	Complex Interstitial Deletions of 11q and Copy-Neutral Loss of Heterozygosity of 11q Are Detected by Whole Genome Copy Number Variation Analysis of Early-Intermediate Stage, High Risk Chronic Lymphocytic Leukemia Patients Blood, 2009, 114, 1245-1245.	0.6	0
313	Longitudinal Genome Wide Analysis of Patients with Chronic Lymphocytic Leukemia Reveals Complex Evolution of Clonal Architecture At Disease Progression and At the Time of Relapse. Blood, 2011, 118, 2838-2838.	0.6	0
314	Infectious Complications Among Individuals with Monoclonal B-Cell Lymphocytosis (MBL): A Prospective Case-Control Study of Newly Diagnosed Patients,. Blood, 2011, 118, 3903-3903.	0.6	0
315	Global Genomic Status At Diagnosis Informs Clinical Outcome in B-Chronic Lymphocytic Leukemia: Stable Versus Progressive Disease. Blood, 2011, 118, 1772-1772.	0.6	0
316	Prevalence of MBL Increases Over Time In Relatives of CLL Families,. Blood, 2011, 118, 3881-3881.	0.6	0
317	Epigallocatechin-3-Gallate (EGCG) Modulates Cytokine Production When Leukemic CLL B-Cells and Marrow Stromal Cells Are Co-Cultured: Correlations with Clinical Activity in a Phase II Trial,. Blood, 2011, 118, 3882-3882.	0.6	0
318	Mesenchymal Stromal Cells Derived From Chronic Lymphocytic Leukemic Patients Express Different Genes and Produce Different Cytokines Compared to MSC Derived From Normal Subjects,. Blood, 2011, 118, 3872-3872.	0.6	0
319	The Prevalence of Serious Infectious Complications in a Cohort of Non-Referred Patients with Newly Diagnosed Chronic Lymphocytic Leukemia (CLL) Compared to Controls: Results of a Cohort Study. Blood, 2011, 118, 4610-4610.	0.6	0
320	Allosteric Akt Inhibitor MK2206 Synergizes with Bendamustine in Promoting the Apoptosis of Chronic Lymphocytic Leukemia Cells and Selectively Targets B-Cell Receptor Mediated Cytokine Production. Blood, 2012, 120, 3928-3928.	0.6	0
321	Very High Risk CLL Characterized by a "Double Hit―Clone with Both 11q22 and 17p13 Deletion Blood, 2012, 120, 2486-2486.	0.6	0
322	Novel Pharmacological Agents Differentially Modulate Cytokine Release On CLL B-Cell-Stromal Cell Co-Culture: Implications for Stromal Rescue of CLL B-Cells From Chemotherapy. Blood, 2012, 120, 3927-3927.	0.6	0
323	Risk of Cancer in Patients with Clinical Monoclonal B-Cell Lymphocytosis (MBL): A Cohort Study of Newly Diagnosed Patients Compared to Controls Blood, 2012, 120, 2893-2893.	0.6	0
324	Clonal Chromosomal Anomalies Similar to CLL and Other Hematologic Malignancies Can Be Found in "Normal―Individuals. Blood, 2012, 120, 873-873.	0.6	0

#	Article	IF	CITATIONS
325	Extramedullary Chronic Lymphocytic Leukemia: Systematic Analysis of Cases Reported Between 1975 and 2010. Blood, 2012, 120, 4607-4607.	0.6	0
326	Chronic Lymphocytic Leukemia in Young (â‰\$5 years) Patients: A Comprehensive Analysis of Prognostic Factors and Outcomes Blood, 2012, 120, 2901-2901.	0.6	0
327	The Relative Significance of ZAP-70 Promoter Methylation As a Prognostic Factor in Previously Untreated Chronic Lymphocytic Leukemia: Validation of Results Using a Second Large CLL Research Consortium (CRC) Patient Data Set. Blood, 2012, 120, 3865-3865.	0.6	0
328	Transformation of Chronic Lymphocytic Leukemia Into Diffuse Large B-Cell Lymphoma (Richter's) Tj ETQq0 0 0 rş	gBT /Qverl 0.0	ock 10 Tf 50 (
329	Analysis of Stem Cell Transplant Referral in a Cohort of Newly Diagnosed Chronic Lymphocytic Leukemia Patients. Blood, 2012, 120, 4252-4252.	0.6	0
330	Genomic Landscape and Clonal Heterogeneity Underlying Progression and Relapse In Chronic Lymphocytic Leukemia (CLL). Blood, 2013, 122, 2855-2855.	0.6	0
331	Chronic Graft Vs Host Disease Is The Strongest Predictor Of Outcome After Reduced Intensity Conditioning Stem Cell Transplantation In Chronic Lymphocytic Leukemia and Is Associated With Pretransplant B Cell Characteristics. Blood, 2013, 122, 3375-3375.	0.6	Ο
332	The AKT Inhibitor MK2206 In Combination With Rituximab and Bendamustine Is Tolerable and Active In Relapsed Or Refractory Chronic Lymphocytic Leukemia: Results From a Phase 1 Study (NCCTG N1087) Tj ETQq0	0 @ugBT /	Overlock 10 1
333	Correlation Between Peripheral Blood Counts and Extent of Bone Marrow Infiltration in Chronic Lymphocytic Leukemia. Blood, 2015, 126, 2926-2926.	0.6	0
334	Reasons for Initiation of First-Line Therapy and Early Outcomes for Patients (Pts) with Rai 0/1 Chronic Lymphocytic Leukemia (CLL): An Analysis of the Connect CLL® Cohort Study. Blood, 2015, 126, 3284-3284.	0.6	0
335	A Comprehensive Progression Risk Score to Predict Treatment Free Survival for Early Stage Chronic Lymphocytic Leukemia Patients. Blood, 2015, 126, 2930-2930.	0.6	0
336	Treatment Selection and Practice Patterns for the Management of High-Risk Chronic Lymphocytic Leukemia (CLL) in the US: An Analysis of the Impact of Risk Stratification on Treatment Selection from the Connect CLL® Registry. Blood, 2015, 126, 4483-4483.	0.6	0
337	Mutations in Driver Genes and Changes in Clonal Dynamics Are Associated with Shorter Time to Treatment in MBL Cases. Blood, 2015, 126, 5264-5264.	0.6	0
338	Analysis of Early Mortality of Chronic Lymphocytic Leukemia (CLL) Patients Treated in US Practices in the Connect CLL® Registry. Blood, 2015, 126, 5270-5270.	0.6	0
339	Novel Associations Between Mutations, Prognostic and Clinical Parameters in Untreated Progressive CLL: Data from E1912, a Randomized Phase III Study of the ECOG-ACRIN Cancer Research Group. Blood, 2016, 128, 4373-4373.	0.6	0
340	Liver Dysfunction in Previously Untreated Chronic Lymphocytic Leukemia: Prevalence and Outcomes in a Large Cohort. Blood, 2016, 128, 5585-5585.	0.6	0
341	The Role of Splenectomy in the Care and Treatment of the CLL Patient. Blood, 2016, 128, 5575-5575.	0.6	0
342	Characteristics of Patients (Pts) with Chronic Lymphocytic Leukemia (CLL) Receiving Rituximab Monotherapy in the Connect® CLL Registry. Blood, 2016, 128, 5941-5941.	0.6	0

#	Article	IF	CITATIONS
343	Epigenetic Silencing of Catalase Induces Accumulation of Reactive Oxygen Species in Chronic Lymphocytic Leukemia B Cells Leading to Activation of Axl: An Escape Strategy?. Blood, 2016, 128, 4363-4363.	0.6	0
344	Bone Marrow (BM) Hematopoietic Dysfunction in Chronic Lymphocytic Leukemia (CLL) - Association with Leukemic Burden and Reversibility with Therapeutic Responses Blood, 2016, 128, 2013-2013.	0.6	0
345	Clinically Ascertained Monoclonal B-Cell Lymphocytosis: Risk of Progression to Chronic Lymphocytic Leukemia Requiring Therapy and Outcomes. Blood, 2016, 128, 3228-3228.	0.6	0
346	Clinical and Serological Characteristics of Cold Autoimmune Hemolytic Anemia with Concomitant Cold Agglutinin and Donath-Landsteiner Antibodies. Blood, 2017, 130, 927-927.	0.6	0
347	Telomere Length Is Associated with Epigenetic Programming in CLL and Is a Superior Predictor of Clinical Outcome with the Ability to Bifurcate Patients with the Same CLL-IPI Score. Blood, 2018, 132, 1833-1833.	0.6	0
348	Clonal Hematopoiesis of Indeterminate Potential (CHIP) and Chronic Lymphocytic Leukemia (CLL) Driver Genes: Risk of CLL and Monoclonal B-Cell Lymphocytosis (MBL). Blood, 2018, 132, 3116-3116.	0.6	0
349	Size Matters: Identification of Larger Size CD19 Positive Extracellular Vesicles in Chronic Lymphocytic Leukemia That Inhibit Chimeric Antigen Receptor T Cell Functions. Blood, 2018, 132, 1865-1865.	0.6	0
350	Enhanced Expression of Beta-Catenin and Axl Receptor Tyrosine Kinase (RTK) in Chronic Lymphocytic Leukemia (CLL) B-Cells with Co-Culture on Marrow Stromal Cells: Implications for Leukemic Cell Drug Resistance. Blood, 2018, 132, 3125-3125.	0.6	0
351	Clinical Characteristics and Outcomes of Chronic Lymphocytic Leukemia Patients with Richter Transformation. Blood, 2018, 132, 1857-1857.	0.6	0
352	Bone Marrow Hematopoietic Dysfunction in Untreated Chronic Lymphocytic Leukemia Is Partially Mediated By Exposure to Constituents of the Leukemic Microenvironment. Blood, 2018, 132, 3132-3132.	0.6	0
353	A Laboratory Based Scoring System Predicts Early Treatment in Rai O/Binet a CLL. Blood, 2018, 132, 4399-4399.	0.6	0
354	Risk Model for Overall Survival for Patients with Relapsed/Refractory Chronic Lymphocytic Leukemia: Validated for Patients on Ibrutinib, Idelalisib, Venetoclax, or Chemoimmunotherapy. Blood, 2018, 132, 4394-4394.	0.6	0
355	Association between the Risk of Low/High-Count Monoclonal B-Cell Lymphocytosis (MBL) and the Chronic Lymphocytic Leukemia (CLL) Polygenic Risk Score (PRS). Blood, 2018, 132, 5538-5538.	0.6	0
356	Developmental DNA Methylation Subtype Predicts Progression to Treatment and Survival in High-Count Monoclonal B Lymphocytosis. Blood, 2019, 134, 3022-3022.	0.6	0
357	A Role for TNF-Î \pm in Chronic Lymphocytic Leukemia Bone Marrow Hematopoietic Dysfunction. Blood, 2019, 134, 4276-4276.	0.6	0
358	Î'-Catenin and Axl Receptor Tyrosine Kinase Modulation in CLL B-Cells with Co-Culture on Marrow Stromal Cells: Implications for Drug Resistance. Blood, 2019, 134, 1739-1739.	0.6	0
359	Tumor Mutational Load and Germline Polygenic Risk Score Predicts Time-to-First Treatment in Chronic Lymphocytic Leukemia (CLL) and High-Count Monoclonal B Cell Lymphocytosis (MBL). Blood, 2019, 134, 852-852.	0.6	0
360	The Role of Imaging in Predicting Time to First Treatment and Overall Survival in Individuals with CLL-like High Count Monoclonal B-Cell Lymphocytosis. Blood, 2019, 134, 3037-3037.	0.6	0

#	Article	IF	CITATIONS
361	Optimized Inhibition of GM-CSF in Preclinical Models of Anti-CD19 Chimeric Antigen Receptor T Cell Therapy. Blood, 2021, 138, 2777-2777.	0.6	0
362	Pre-Existing T Cell Subsets Determine Anti-PD1 Blockade Response in Richter's Transformation. Blood, 2020, 136, 42-43.	0.6	0
363	Polygenic Risk Score and Risk of Chronic Lymphocytic Leukemia, Monoclonal B-Cell Lymphocytosis (MBL), and MBL Subtypes. Blood, 2020, 136, 35-36.	0.6	0
364	Clinical Characteristics and Outcomes of Newly Diagnosed Patients with Chronic Lymphocytic Leukemia Who Are 80 Years of Age or Older. Blood, 2020, 136, 26-27.	0.6	0
365	Identification of a Novel Role for PD-1 Signaling in Promotion Tumor Proliferation in B-Cell Lymphoma. Blood, 2020, 136, 10-12.	0.6	0
366	Axl-RTK Inhibition Modulates Monocyte Immune Response to Enhance the Anti-Tumor Effects of CD19 Redirected Chimeric Antigen Receptor T Cells in Preclinical Models. Blood, 2020, 136, 28-29.	0.6	0
367	Impact of Deletion6q23 Identified By FISH in Patients with Chronic Lymphocytic Leukemia. Blood, 2020, 136, 12-13.	0.6	0
368	Targeting Aberrant Chromatin in Chronic Lymphocytic Leukemia. Blood, 2020, 136, 1-1.	0.6	0