Akira Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5243978/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nature Medicine, 2011, 17, 944-951.	30.7	170
2	Dysregulated YAP1/TAZ and TGF-Î ² signaling mediate hepatocarcinogenesis in <i>Mob1a/1b</i> -deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E71-80.	7.1	158
3	Cancer susceptibility and embryonic lethality in Mob1a/1b double-mutant mice. Journal of Clinical Investigation, 2012, 122, 4505-4518.	8.2	125
4	Portrait of PTEN: Messages from mutant mice. Cancer Science, 2008, 99, 209-213.	3.9	95
5	YAP1 is a potent driver of the onset and progression of oral squamous cell carcinoma. Science Advances, 2020, 6, eaay3324.	10.3	75
6	INPP4B Is a PtdIns(3,4,5)P3 Phosphatase That Can Act as a Tumor Suppressor. Cancer Discovery, 2015, 5, 730-739.	9.4	72
7	Pten deletion in RIP-Cre neurons protects against type 2 diabetes by activating the anti-inflammatory reflex. Nature Medicine, 2014, 20, 484-492.	30.7	60
8	A new <scp>PICT</scp> ure of nucleolar stress. Cancer Science, 2012, 103, 632-637.	3.9	51
9	Contributions of Hepatocytes and Bile Ductular Cells in Ductular Reactions and Remodeling of the Biliary System after Chronic Liver Injury. American Journal of Pathology, 2014, 184, 3001-3012.	3.8	50
10	MDCK cells expressing constitutively active Yes-associated protein (YAP) undergo apical extrusion depending on neighboring cell status. Scientific Reports, 2016, 6, 28383.	3.3	50
11	Loss of <i>Mob1a/b</i> in mice results in chondrodysplasia due to YAP1/TAZ-TEADs-dependent repression of SOX9. Development (Cambridge), 2018, 145, .	2.5	50
12	Capturing the mammalian Hippo: Elucidating its role in cancer. Cancer Science, 2013, 104, 1271-1277.	3.9	43
13	Protein tyrosine phosphatase SAP-1 protects against colitis through regulation of CEACAM20 in the intestinal epithelium. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E4264-E4271.	7.1	39
14	Merlin/NF2-Lin28B-let-7 Is a Tumor-Suppressive Pathway that Is Cell-Density Dependent and Hippo Independent. Cell Reports, 2016, 14, 2950-2961.	6.4	38
15	The role of Hippo‥AP signaling in squamous cell carcinomas. Cancer Science, 2021, 112, 51-60.	3.9	38
16	Targeting the Hippo signalling pathway for cancer treatment. Journal of Biochemistry, 2017, 161, mvw074.	1.7	37
17	Antitumor effects of the antiparasitic agent ivermectin via inhibition of Yes-associated protein 1 expression in gastric cancer. Oncotarget, 2017, 8, 107666-107677.	1.8	37
18	BMP type I receptor inhibition attenuates endothelial dysfunction in mice with chronic kidney disease. Kidney International, 2015, 87, 128-136.	5.2	24

Akira Suzuki

#	Article	IF	CITATIONS
19	Endogenous YAP1 activation drives immediate onset of cervical carcinoma in situ in mice. Cancer Science, 2020, 111, 3576-3587.	3.9	24
20	A mass spectrometric method for in-depth profiling of phosphoinositide regioisomers and their disease-associated regulation. Nature Communications, 2022, 13, 83.	12.8	20
21	Hyperactive mTOR signals in the proopiomelanocortin-expressing hippocampal neurons cause age-dependent epilepsy and premature death in mice. Scientific Reports, 2016, 6, 22991.	3.3	18
22	Hippo vs. Crab: tissueâ€specific functions of the mammalian Hippo pathway. Genes To Cells, 2017, 22, 6-31.	1.2	17
23	Alantolactone is a natural product that potently inhibits YAP1/TAZ through promotion of reactive oxygen species accumulation. Cancer Science, 2021, 112, 4303-4316.	3.9	17
24	Development of a mouse model for testing therapeutic agents: the anticancer effect of dienogest on endometrial neoplasms. Gynecological Endocrinology, 2016, 32, 403-407.	1.7	16
25	PICT1 expression is a poor prognostic factor in non-small cell lung cancer. Oncoscience, 2014, 1, 375-382.	2.2	16
26	Retrospective Evaluation of Treatment Outcome in Japanese Children with Complete Unilateral Cleft Lip and Palate. Part 1: Five-Year-Olds' Index for Dental Arch Relationships. Cleft Palate-Craniofacial Journal, 2007, 44, 434-443.	0.9	15
27	Aminoâ€ŧerminal enhancer of split gene <i><scp>AES</scp></i> encodes a tumor and metastasis suppressor of prostate cancer. Cancer Science, 2017, 108, 744-752.	3.9	15
28	Hippo pathway controls cell adhesion and contextâ€dependent cell competition to influence skin engraftment efficiency. FASEB Journal, 2019, 33, 5548-5560.	0.5	13
29	Hippo-TAZ signaling is the master regulator of the onset of triple-negative basal-like breast cancers. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	13
30	FEAT enhances INSL3 expression in testicular Leydig cells. Genes To Cells, 2018, 23, 952-962.	1.2	4
31	TAZ inhibits acinar cell differentiation but promotes immature ductal cell proliferation in adult mouse salivary glands. Genes To Cells, 2021, 26, 714-726.	1.2	4
32	The Hippo Signaling Pathway: A Candidate New Drug Target for Malignant Tumors. , 2015, , 79-94.		4
33	YAP1/TAZ activity maintains vascular integrity and organismal survival. Biochemical and Biophysical Research Communications, 2022, 619, 117-123.	2.1	4