List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5243972/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Jellium at finite temperature. Molecular Physics, 2022, 120, .	0.8	2
2	Eliminating nonrenormalizability helps prove scaled affine quantization of φ44 is nontrivial. International Journal of Modern Physics A, 2022, 37, .	0.5	10
3	Kinetic factors in affine quantization and their role in field theory Monte Carlo. International Journal of Modern Physics A, 2022, 37, .	0.5	9
4	Form invariance of the moment sum-rules for jellium with the addition of short-range terms in the pair-potential. Indian Journal of Physics, 2021, 95, 1027-1032.	0.9	2
5	Jellium at finite temperature using the restricted worm algorithm. European Physical Journal B, 2021, 94, 1.	0.6	5
6	Affine quantization of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mo stretchy="false"> (<mml:msup> <mml:mi>φ</mml:mi> <mml:mn>4</mml:mn> </mml:msup> <mml:ms< td=""><td>ubı.6mml:</td><td>ma))0Tj ETQqC</td></mml:ms<></mml:mo </mml:math>	ub ı. 6mml:	ma))0Tj ETQqC
7	quantization fails. Physical Review D, 2021, 103, . Monte Carlo evaluation of the continuum limit of (ϕ12)3. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 083102.	0.9	16
8	Monte Carlo Evaluation of the Continuum Limit of the Two-Point Function of the Euclidean Free Real Scalar Field Subject to Affine Quantization. Journal of Statistical Physics, 2021, 184, 1.	0.5	9
9	MonteÂCarlo evaluation of the continuum limit of the two-point function of two Euclidean Higgs real scalar fields subject to affine quantization. Physical Review D, 2021, 104, .	1.6	5
10	Finite-size effects and thermodynamic limit in one-dimensional Janus fluids. Journal of Statistical Mechanics: Theory and Experiment, 2021, 2021, 103210.	0.9	2
11	How Should We Choose the Boundary Conditions in a Simulation Which Could Detect Anyons in One and Two Dimensions?. Journal of Low Temperature Physics, 2021, 202, 247-262.	0.6	2
12	Plasma living in a curved surface at some special temperature. Physica A: Statistical Mechanics and Its Applications, 2019, 524, 177-220.	1.2	3
13	From the Liouville to the Smoluchowski equation for a colloidal solute particle in a solvent. Physica A: Statistical Mechanics and Its Applications, 2019, 515, 682-692.	1.2	2
14	Two component boson–fermion plasma at finite temperature. International Journal of Modern Physics C, 2018, 29, 1850028.	0.8	4
15	One-component fermion plasma on a sphere at finite temperature. International Journal of Modern Physics C, 2018, 29, 1850064.	0.8	3
16	Effect of quantum dispersion on the radial distribution function of a one-component sticky-hard-sphere fluid. Journal of Statistical Mechanics: Theory and Experiment, 2018, 2018, 043103.	0.9	2
17	One-Dimensional Fluids with Positive Potentials. Journal of Statistical Physics, 2017, 166, 1334-1342.	0.5	4
18	The moment sum-rules for ionic liquids at criticality. Physica A: Statistical Mechanics and Its Applications, 2017, 477, 187-194.	1.2	4

#	Article	IF	CITATIONS
19	White-dwarf equation of state and structure: the effect of temperature. Journal of Statistical Mechanics: Theory and Experiment, 2017, 2017, 113101.	0.9	5
20	One-Dimensional Fluids with Second Nearest–Neighbor Interactions. Journal of Statistical Physics, 2017, 169, 1171-1201.	0.5	10
21	Andersen–Weeks–Chandler Perturbation Theory and One-Component Sticky-Hard-Spheres. Journal of Statistical Physics, 2017, 168, 652-665.	0.5	1
22	The Square-Shoulder-Asakura–Oosawa model. Physica A: Statistical Mechanics and Its Applications, 2016, 457, 406-412.	1.2	2
23	Exact Results for One Dimensional Fluids Through Functional Integration. Journal of Statistical Physics, 2016, 163, 1247-1267.	0.5	7
24	Fourth Moment Sum Rule for the Charge Correlations of a Two-Component Classical Plasma. Journal of Statistical Physics, 2016, 163, 887-913.	0.5	8
25	Supercooled superfluids in Monte Carlo simulations. European Physical Journal B, 2016, 89, 1.	0.6	3
26	Two-phase coexistence for hydrogen-helium mixtures. Physical Review E, 2015, 92, 012133.	0.8	4
27	Wertheim perturbation theory: thermodynamics and structure of patchy colloids. Molecular Physics, 2015, 113, 2593-2607.	0.8	14
28	Bridging and depletion mechanisms in colloid-colloid effective interactions: A reentrant phase diagram. Journal of Chemical Physics, 2015, 142, 224905.	1.2	24
29	Quantum Gibbs ensemble Monte Carlo. Journal of Chemical Physics, 2014, 141, 114110.	1.2	8
30	Gas-liquid coexistence for the boson square-well fluid and theHe4binodal anomaly. Physical Review E, 2014, 90, 020102.	0.8	4
31	Depletion force in the infinite-dilution limit in a solvent of nonadditive hard spheres. Journal of Chemical Physics, 2014, 140, 244513.	1.2	12
32	Wertheim and Bjerrum-Tani-Henderson theories for associating fluids: A critical assessment. Journal of Chemical Physics, 2014, 141, 074108.	1.2	6
33	Low temperature acoustic polaron localization. Physica B: Condensed Matter, 2013, 412, 112-118.	1.3	1
34	Hellmann and Feynman theorem versus diffusion Monte Carlo experiment. Solid State Communications, 2013, 159, 106-109.	0.9	2
35	Janus fluid with fixed patch orientations: Theory and simulations. Journal of Chemical Physics, 2013, 138, 094904.	1.2	19
36	Multicomponent fluid of nonadditive hard spheres near a wall. Physical Review E, 2013, 87, 042102.	0.8	9

#	Article	IF	CITATIONS
37	Radial distribution function in a diffusion Monte Carlo simulation of a Fermion fluid between the ideal gas and the Jellium model. European Physical Journal B, 2013, 86, 1.	0.6	5
38	Phase diagrams of Janus fluids with up-down constrained orientations. Journal of Chemical Physics, 2013, 139, 174902.	1.2	15
39	The restricted primitive model of ionic fluids with nonadditive diameters. Europhysics Letters, 2013, 101, 46003.	0.7	8
40	Monte Carlo simulation of the nonadditive restricted primitive model of ionic fluids: Phase diagram and clustering. Physical Review E, 2013, 87, 052303.	0.8	14
41	The Janus Fluid. SpringerBriefs in Physics, 2013, , .	0.2	5
42	Localization of acoustic polarons at low temperatures: A path-integral Monte Carlo approach. Physical Review B, 2012, 86, .	1.1	14
43	The density of a fluid on a curved surface. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012, P10024.	0.9	6
44	Two component plasma in a Flamm's paraboloid. Journal of Statistical Mechanics: Theory and Experiment, 2012, 2012, P04015.	0.9	7
45	A cluster theory for a Janus fluid. European Physical Journal B, 2012, 85, 1.	0.6	14
46	Structure of colloidosomes with tunable particle density: Simulation versus experiment. Physical Review E, 2012, 85, 061404.	0.8	19
47	The penetrable square-well model: extensive versus non-extensive phases. Molecular Physics, 2011, 109, 2723-2736.	0.8	14
48	Cluster theory of Janus particles. Soft Matter, 2011, 7, 2419.	1.2	41
49	Phase diagram of the penetrable-square-well model. Europhysics Letters, 2011, 93, 26002.	0.7	16
50	Nonadditive hard-sphere fluid mixtures: A simple analytical theory. Physical Review E, 2011, 84, 041201.	0.8	12
51	Field-theoretical approach to a dense polymer with an ideal binary mixture of clustering centers. Physical Review E, 2011, 84, 011808.	0.8	0
52	A numerical test of a high-penetrability approximation for the one-dimensional penetrable-square-well model. Journal of Chemical Physics, 2010, 133, 024101.	1.2	15
53	Non-existence of a phase transition for penetrable square wells in one dimension. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P07030.	0.9	9
54	Local orientational ordering in fluids of spherical molecules with dipolarlike anisotropic adhesion. Physical Review E, 2009, 80, 061207.	0.8	7

#	Article	IF	CITATIONS
55	Penetrable-square-well fluids: Analytical study and Monte Carlo simulations. Journal of Chemical Physics, 2009, 131, 124106.	1.2	21
56	Thermodynamic consistency of energy and virial routes: An exact proof within the linearized Debye–Hückel theory. Journal of Chemical Physics, 2009, 131, 181105.	1.2	14
57	Two-Dimensional One-Component Plasma on Flamm's Paraboloid. Journal of Statistical Physics, 2008, 133, 449-489.	0.5	20
58	Fluids of spherical molecules with dipolarlike nonuniform adhesion: An analytically solvable anisotropic model. Physical Review E, 2008, 78, 021201.	0.8	12
59	Penetrable square-well fluids: Exact results in one dimension. Physical Review E, 2008, 77, 051206.	0.8	31
60	Patchy sticky hard spheres: Analytical study and Monte Carlo simulations. Journal of Chemical Physics, 2007, 127, 234507.	1.2	46
61	Multicomponent adhesive hard sphere models and short-ranged attractive interactions in colloidal or micellar solutions. Physical Review E, 2006, 74, 051407.	0.8	31
62	Phase behaviour of polydisperse sticky hard spheres: analytical solutions and perturbation theory. Molecular Physics, 2006, 104, 3451-3459.	0.8	11
63	Phase behavior of weakly polydisperse sticky hard spheres: Perturbation theory for the Percus-Yevick solution. Journal of Chemical Physics, 2006, 125, 164504.	1.2	17
64	Thermodynamic instabilities of a binary mixture of sticky hard spheres. Physical Review E, 2005, 72, 011503.	0.8	22
65	Publisher's Note: Thermodynamic instabilities of a binary mixture of sticky hard spheres [Phys. Rev. E72, 011503 (2005)]. Physical Review E, 2005, 72, .	0.8	1
66	Stability boundaries, percolation threshold, and two-phase coexistence for polydisperse fluids of adhesive colloidal particles. Journal of Chemical Physics, 2005, 122, 034901.	1.2	24
67	Computer simulation study of the closure relations in hard sphere fluids. Journal of Chemical Physics, 2004, 120, 10681-10690.	1.2	17
68	Direct correlation functions of the Widom–Rowlinson model. Physica A: Statistical Mechanics and Its Applications, 2004, 332, 349-359.	1.2	6
69	Pressures for a One-Component Plasma on a Pseudosphere. Journal of Statistical Physics, 2003, 112, 27-57.	0.5	24
70	Stability of the iterative solutions of integral equations as one phase freezing criterion. Physical Review E, 2003, 68, 046104.	0.8	2
71	Generating functionals, consistency, and uniqueness in the integral equation theory of liquids. Journal of Chemical Physics, 2003, 119, 3810-3819.	1.2	11
72	Some properties of short-range correlations for electrons in quantum wires. Physica B: Condensed Matter, 1996, 217, 35-40.	1.3	4

#	Article	IF	CITATIONS
73	Decay of correlations and related sum rules in a layered classical plasma. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 155-167.	0.4	0
74	Coordinate space form of interacting reference response function ofd-dimensional jellium. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1995, 17, 1165-1179.	0.4	1