
Tatiana V Ovchinnikova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5243665/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins. Biochemical and Biophysical Research Communications, 2006, 348, 514-523.	1.0	153
2	Purification and primary structure of two isoforms of arenicin, a novel antimicrobial peptide from marine polychaetaArenicola marina. FEBS Letters, 2004, 577, 209-214.	1.3	130
3	Molecular Mechanism of Action of β-Hairpin Antimicrobial Peptide Arenicin: Oligomeric Structure in Dodecylphosphocholine Micelles and Pore Formation in Planar Lipid Bilayers. Biochemistry, 2011, 50, 6255-6265.	1.2	78
4	Recombinant expression, synthesis, purification, and solution structure of arenicin. Biochemical and Biophysical Research Communications, 2007, 360, 156-162.	1.0	70
5	A novel lipid transfer protein from the pea Pisum sativum: isolation, recombinant expression, solution structure, antifungal activity, lipid binding, and allergenic properties. BMC Plant Biology, 2016, 16, 107.	1.6	68
6	Isolation, Structure Elucidation, and Synergistic Antibacterial Activity of a Novel Two-Component Lantibiotic Lichenicidin from <i>Bacillus licheniformis</i> VK21. Biochemistry, 2010, 49, 6462-6472.	1.2	67
7	Network inference from glycoproteomics data reveals new reactions in the IgG glycosylation pathway. Nature Communications, 2017, 8, 1483.	5.8	67
8	A novel defensin from the lentil Lens culinaris seeds. Biochemical and Biophysical Research Communications, 2008, 371, 860-865.	1.0	52
9	Design of antimicrobial peptide arenicin analogs with improved therapeutic indices. Journal of Peptide Science, 2015, 21, 105-113.	0.8	48
10	Plant Pathogenesis-Related Proteins PR-10 and PR-14 as Components of Innate Immunity System and Ubiquitous Allergens. Current Medicinal Chemistry, 2017, 24, 1772-1787.	1.2	44
11	Molecular insight into mechanism of antimicrobial action of the βâ€hairpin peptide arenicin: Specific oligomerization in detergent micelles. Biopolymers, 2008, 89, 455-464.	1.2	43
12	Immunomodulatory and Allergenic Properties of Antimicrobial Peptides. International Journal of Molecular Sciences, 2022, 23, 2499.	1.8	43
13	Recombinant expression and solution structure of antimicrobial peptide aurelin from jellyfish Aurelia aurita. Biochemical and Biophysical Research Communications, 2012, 429, 63-69.	1.0	41
14	Molecular dynamics simulation of antimicrobial peptide arenicinâ€2: βâ€Hairpin stabilization by noncovalent interactions. Biopolymers, 2009, 92, 143-155.	1.2	40
15	Recombinant production and solution structure of lipid transfer protein from lentil Lens culinaris. Biochemical and Biophysical Research Communications, 2013, 439, 427-432.	1.0	33
16	Domain structure and ATP-induced conformational changes inEscherichia coliprotease Lon revealed by limited proteolysis and autolysis. FEBS Letters, 2002, 526, 66-70.	1.3	32
17	Structure and Alignment of the Membrane-Associated Antimicrobial Peptide Arenicin by Oriented Solid-State NMR Spectroscopy. Biochemistry, 2011, 50, 3784-3795.	1.2	30
18	Comparative in vitro study on cytotoxicity of recombinant βâ€hairpin peptides. Chemical Biology and Drug Design, 2018, 91, 294-303.	1.5	30

#	Article	IF	CITATIONS
19	Novel Antimicrobial Peptides from the Arctic Polychaeta Nicomache minor Provide New Molecular Insight into Biological Role of the BRICHOS Domain. Marine Drugs, 2018, 16, 401.	2.2	30
20	Improved strategy for recombinant production and purification of antimicrobial peptide tachyplesin I and its analogs with high cell selectivity. Biotechnology and Applied Biochemistry, 2017, 64, 35-42.	1.4	29
21	Pediocin-Like Antimicrobial Peptides of Bacteria. Biochemistry (Moscow), 2019, 84, 464-478.	0.7	29
22	Redesigning Arenicin-1, an Antimicrobial Peptide from the Marine Polychaeta Arenicola marina, by Strand Rearrangement or Branching, Substitution of Specific Residues, and Backbone Linearization or Cyclization. Marine Drugs, 2019, 17, 376.	2.2	28
23	Ligand Binding Properties of the Lentil Lipid Transfer Protein: Molecular Insight into the Possible Mechanism of Lipid Uptake. Biochemistry, 2017, 56, 1785-1796.	1.2	27
24	Dimerization of the antimicrobial peptide arenicin plays a key role in the cytotoxicity but not in the antibacterial activity. Biochemical and Biophysical Research Communications, 2017, 482, 1320-1326.	1.0	26
25	Cytotoxic Potential of the Novel Horseshoe Crab Peptide Polyphemusin III. Marine Drugs, 2018, 16, 466.	2.2	26
26	A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides. Current Medicinal Chemistry, 2017, 24, 1724-1746.	1.2	24
27	Combined Antibacterial Effects of Goat Cathelicidins With Different Mechanisms of Action. Frontiers in Microbiology, 2018, 9, 2983.	1.5	24
28	Bioengineering and functional characterization of arenicin shortened analogs with enhanced antibacterial activity and cell selectivity. Journal of Peptide Science, 2016, 22, 82-91.	0.8	22
29	Purification and primary structure of novel lipid transfer proteins from germinated lentil (Lens) Tj ETQq1 1 0.784	314.rgBT /	Overlock 10
30	Antimicrobial peptides of invertebrates. Part 1. structure, biosynthesis, and evolution. Russian Journal of Bioorganic Chemistry, 2016, 42, 229-248.	0.3	21
31	A novel lipid transfer protein from the dill <i>Anethum graveolens</i> L.: isolation, structure, heterologous expression, and functional characteristics. Journal of Peptide Science, 2016, 22, 59-66.	0.8	20
32	Mechanism of Action and Therapeutic Potential of the β-Hairpin Antimicrobial Peptide Capitellacin from the Marine Polychaeta Capitella teleta. Marine Drugs, 2022, 20, 167.	2.2	20
33	Heterologous expression and solution structure of defensin from lentil Lens culinaris. Biochemical and Biophysical Research Communications, 2014, 451, 252-257.	1.0	19
34	Effect of N- and C-Terminal Modifications on Cytotoxic Properties of Antimicrobial Peptide Tachyplesin I. Bulletin of Experimental Biology and Medicine, 2017, 162, 754-757.	0.3	19
35	Anticancer Activity of the Goat Antimicrobial Peptide ChMAP-28. Frontiers in Pharmacology, 2018, 9, 1501.	1.6	19
36	Modulation of Human Complement System by Antimicrobial Peptide Arenicin-1 from Arenicola marina. Marine Drugs, 2018, 16, 480.	2.2	18

Τατιανά V Ονςμιννικονά

#	Article	IF	CITATIONS
37	Structure Elucidation and Functional Studies of a Novel β-hairpin Antimicrobial Peptide from the Marine Polychaeta Capitella teleta. Marine Drugs, 2020, 18, 620.	2.2	16
38	Specificity of human natural antibodies referred to as anti-Tn. Molecular Immunology, 2020, 120, 74-82.	1.0	16
39	Structure, Function, and Therapeutic Potential of Marine Bioactive Peptides. Marine Drugs, 2019, 17, 505.	2.2	15
40	Impact of Different Lipid Ligands on the Stability and IgE-Binding Capacity of the Lentil Allergen Len c 3. Biomolecules, 2020, 10, 1668.	1.8	15
41	Neuroleptic Properties of the Ion-Channel-Forming Peptaibol Zervamicin: Locomotor Activity and Behavioral Effects. Chemistry and Biodiversity, 2007, 4, 1374-1387.	1.0	14
42	Analysis of Synergistic Effects of Antimicrobial Peptide Arenicin-1 and Conventional Antibiotics. Bulletin of Experimental Biology and Medicine, 2017, 162, 765-768.	0.3	14
43	Lipid-dependent pore formation by antimicrobial peptides arenicin-2 and melittin demonstrated by their proton transfer activity. Journal of Peptide Science, 2015, 21, 71-76.	0.8	12
44	Marine antimicrobial peptide arenicin adopts a monomeric twisted βâ€hairpin structure and forms low conductivity pores in zwitterionic lipid bilayers. Peptide Science, 2018, 110, e23093.	1.0	12
45	Plant Pathogenesis-Related Proteins Binding Lipids and Other Hydrophobic Ligands. Russian Journal of Bioorganic Chemistry, 2018, 44, 586-594.	0.3	12
46	Caprine Bactenecins as Promising Tools for Developing New Antimicrobial and Antitumor Drugs. Frontiers in Cellular and Infection Microbiology, 2020, 10, 552905.	1.8	12
47	Lactoferrin from canine neutrophils: Isolation and physicochemical and antimicrobial properties. Biochemistry (Moscow), 2007, 72, 445-451.	0.7	11
48	Antimicrobial Peptide Arenicin-1 Derivative Ar-1-(C/A) as Complement System Modulator. Marine Drugs, 2020, 18, 631.	2.2	11
49	Antimicrobial peptides of invertebrates. Part 2. biological functions and mechanisms of action. Russian Journal of Bioorganic Chemistry, 2016, 42, 343-360.	0.3	10
50	Peptides of the Innate Immune System of Plants. Part I. Structure, Biological Activity, and Mechanisms of Action. Russian Journal of Bioorganic Chemistry, 2018, 44, 573-585.	0.3	10
51	Peptides of the Innate Immune System of Plants. Part II. Biosynthesis, Biological Functions, and Possible Practical Applications. Russian Journal of Bioorganic Chemistry, 2019, 45, 55-65.	0.3	10
52	Plant Defensins: Structure, Functions, Biosynthesis, and the Role in the Immune Response. Russian Journal of Bioorganic Chemistry, 2018, 44, 261-278.	0.3	9
53	Effect of Arenicins and Other β-Hairpin Antimicrobial Peptides on Pseudomonas Aeruginosa PAO1 Biofilms. Pharmaceutical Chemistry Journal, 2017, 50, 715-720.	0.3	8
54	Role of Pea LTPs and Abscisic Acid in Salt-Stressed Roots. Biomolecules, 2020, 10, 15.	1.8	8

ΤΑΤΙΑΝΑ V Ονςηιννικονα

#	Article	IF	CITATIONS
55	Investigation of Sensitization Potential of the Soybean Allergen Gly m 4 by Using Caco-2/Immune Cells Co-Culture Model. Nutrients, 2021, 13, 2058.	1.7	8
56	Effects of Salinity and Abscisic Acid on Lipid Transfer Protein Accumulation, Suberin Deposition and Hydraulic Conductance in Pea Roots. Membranes, 2021, 11, 762.	1.4	8
57	Molecular mechanisms of antitumor effect of natural antimicrobial peptides. Russian Journal of Bioorganic Chemistry, 2016, 42, 575-589.	0.3	7
58	Formation of arenicin-1 microdomains in bilayers and their specific lipid interaction revealed by Z-scan FCS. Analytical and Bioanalytical Chemistry, 2011, 399, 3547-3554.	1.9	6
59	Interaction between the Lentil Lipid Transfer Protein Lc-LTP2 and Its Novel Signal Ligand PI(4,5)P2. Membranes, 2020, 10, 357.	1.4	6
60	A Novel Proline-Rich Cathelicidin from the Alpaca Vicugna pacos with Potency to Combat Antibiotic-Resistant Bacteria: Mechanism of Action and the Functional Role of the C-Terminal Region. Membranes, 2022, 12, 515.	1.4	5
61	How Do Pollen Allergens Sensitize?. Frontiers in Molecular Biosciences, 0, 9, .	1.6	5
62	Dodecapeptide Cathelicidins of Cetartiodactyla: Structure, Mechanism of Antimicrobial Action, and Synergistic Interaction With Other Cathelicidins. Frontiers in Microbiology, 2021, 12, 725526.	1.5	4
63	Marine Peptides: Structure, Bioactivities, and a New Hope for Therapeutic Application. Marine Drugs, 2021, 19, 407.	2.2	3
64	Effective lipidâ€detergent system for study of membrane active peptides in fluid liposomes. Journal of Peptide Science, 2016, 22, 98-105.	0.8	2
65	Do Lipids Influence Gastrointestinal Processing: A Case Study of Major Soybean Allergen Gly m 4. Membranes, 2021, 11, 754.	1.4	2
66	Effect of Point Mutations on Structural and Allergenic Properties of the Lentil Allergen Len c 3. Membranes, 2021, 11, 939.	1.4	2
67	Analysis of Antibacterial Action of Mammalian Host-Defense Cathelicidins and Induction of Resistance to Them in MβL-Producing Pseudomonas aeruginosa. Bulletin of Experimental Biology and Medicine, 2022, 172, 447-452.	0.3	1