Xudong Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5243065/publications.pdf

Version: 2024-02-01

		516710	552781
30	712	16	26
papers	citations	h-index	g-index
30	30	30	810
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Improved Sensitivity of Flexible Conductive Composites Throughout the Working Strain Range Based on Bioinspired Strain Redistribution. ACS Applied Polymer Materials, 2022, 4, 1608-1616.	4.4	1
2	Enhanced Specific Capacitance and Stability of Polyaniline by Nafion Doping. ChemElectroChem, 2022, 9, .	3 . 4	2
3	Advanced montmorillonite modification by using corrosive microorganisms as an alternative filler to reinforce natural rubber. Applied Clay Science, 2022, 225, 106534.	5.2	10
4	Polyethyleneimine-filled sepiolite nanorods-embedded poly(2,5-benzimidazole) composite membranes for wide-temperature PEMFCs. Journal of Cleaner Production, 2022, 359, 131977.	9.3	12
5	The Current Developments and Perspectives of V ₂ O ₅ as Cathode for Rechargeable Aqueous Zincâ€lon Batteries. Energy Technology, 2021, 9, 2000789.	3.8	55
6	Polypyrrole nanowires as a cathode microporous layer for direct methanol fuel cell to enhance oxygen transport. International Journal of Energy Research, 2021, 45, 3375-3384.	4.5	9
7	Reticulated polyaniline nanowires as a cathode microporous layer for high-temperature PEMFCs. International Journal of Hydrogen Energy, 2021, 46, 8802-8809.	7.1	12
8	The tunable sensing behaviors of flexible conductive PDMS/NCG composites via regulation of filler size prepared by a facile sedimentation method. Composites Science and Technology, 2021, 216, 109037.	7.8	4
9	Electroactivation-induced hydrated zinc vanadate as cathode for high-performance aqueous zinc-ion batteries. Journal of Alloys and Compounds, 2021, 884, 161147.	5 . 5	20
10	Hydrophilic PDMS with a sandwich-like structure and no loss of mechanical properties and optical transparency. Applied Surface Science, 2020, 503, 144126.	6.1	14
11	Designing high electrochemical surface area between polyaniline and hydrogel polymer electrolyte for flexible supercapacitors. Applied Surface Science, 2020, 507, 145135.	6.1	60
12	FeVO4â«nH2O@rGO nanocomposite as high performance cathode materials for aqueous Zn-ion batteries. Journal of Alloys and Compounds, 2020, 818, 153372.	5 . 5	46
13	Facile one-step preparation of laminated PDMS based flexible strain sensors with high conductivity and sensitivity via filler sedimentation. Composites Science and Technology, 2020, 186, 107933.	7.8	33
14	Micelle-template synthesis of a 3D porous FeNi alloy and nitrogen-codoped carbon material as a bifunctional oxygen electrocatalyst. Electrochimica Acta, 2020, 331, 135375.	5.2	28
15	A Modified Fourâ€Probe Method to Separate Ionic Conductance from Composite Conductors. ChemElectroChem, 2020, 7, 3535-3538.	3.4	1
16	Bioinspired design of flexible strain sensor with high performance based on gradient filler distributions. Composites Science and Technology, 2020, 200, 108319.	7.8	18
17	Polyaniline Nanorod Arrays as a Cathode Material for High-Rate Zinc-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 12360-12367.	5.1	32
18	In situ synthesis of star copolymers consisting of a <scp>polyhedral oligomeric silsesquioxane</scp> core and poly(2,5â€benzimidazole) arms for highâ€temperature proton exchange membrane fuel cells. International Journal of Energy Research, 2020, 44, 8769-8780.	4.5	6

#	ARTICLE	IF	CITATION
19	Homogeneously dispersed composites of hydroxyapatite nanorods and poly(lactic acid) and their mechanical properties and crystallization behavior. Composites Part A: Applied Science and Manufacturing, 2020, 132, 105841.	7.6	18
20	Design of sepiolite-supported ionogel-embedded composite membranes without proton carrier wastage for wide-temperature-range operation of proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2019, 7, 15288-15301.	10.3	54
21	Preparation and properties of flexible conductive polydimethylsiloxane composites containing hybrid fillers. Polymer Bulletin, 2019, 76, 6487-6501.	3.3	13
22	Advanced coal fly ash modification by using corrosive microorganisms as alternative filler-reinforcing fluororubbers. Materials Letters, 2019, 246, 32-35.	2.6	6
23	Poly(2,5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range. Journal of Membrane Science, 2019, 574, 282-298.	8.2	57
24	Highly flexible strain sensors based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared by a swelling/permeating method and enhanced sensitivity by CNTs surface modification. Composites Science and Technology, 2019, 171, 218-225.	7.8	62
25	Chemical Foaming Coupled Self-Etching: A Multiscale Processing Strategy for Ultrahigh-Surface-Area Carbon Aerogels. ACS Applied Materials & Interfaces, 2018, 10, 2819-2827.	8.0	5
26	A Self-Charging Hybrid Electric Power Device with High Specific Energy and Power. ACS Energy Letters, 2018, 3, 2425-2432.	17.4	30
27	Hierarchically ordered arrays with platinum coated PANI nanowires for highly efficient fuel cell electrodes. Journal of Materials Chemistry A, 2017, 5, 15260-15265.	10.3	25
28	Hybrid polymer matrix composite containing polyaniline and Nafion as novel precursor of the enhanced catalyst for oxygen reduction reaction. RSC Advances, 2016, 6, 59961-59969.	3.6	3
29	Aligned polyaniline nanorods in situ grown on gas diffusion layer and their application in polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2016, 41, 3655-3663.	7.1	28
30	Bio-inspired Construction of Advanced Fuel Cell Cathode with Pt Anchored in Ordered Hybrid Polymer Matrix. Scientific Reports, 2015, 5, 16100.	3.3	48