Nageshwar Singh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5243001/publications.pdf

Version: 2024-02-01

1307594 1281871 26 144 11 7 citations h-index g-index papers 26 26 26 89 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Design of a transversely pumped, high repetition rate, narrow bandwidth dye laser with high wavelength stability. Review of Scientific Instruments, 2004, 75, 5126-5130.	1.3	19
2	Raman and photoelectron spectroscopic investigation of high-purity niobium materials: Oxides, hydrides, and hydrocarbons. Journal of Applied Physics, 2016, 120, .	2.5	19
3	The spectral measurement of a high repetition rate tunable dye laser output using Fabry–Perot fringe. Optics and Laser Technology, 2007, 39, 733-737.	4.6	14
4	A composite (stacked) picture generation technique for spectral profile representation of dye laser. Optics Communications, 2009, 282, 4259-4265.	2.1	13
5	Influence of optical inhomogeneity in the gain medium on the bandwidth of a high-repetition-rate dye laser pumped by copper vapor laser. Optical Engineering, 2006, 45, 104204.	1.0	11
6	Study of emission characteristics in laser dye mixtures encapsulated in silica gel matrices. Optical Materials, 2008, 30, 1273-1283.	3.6	11
7	Pulsed Laser Induced Multiphoton Photoconductivity in an Indirect Band Gap Crystal: PbI2. Physica Status Solidi (B): Basic Research, 2000, 219, 421-424.	1.5	8
8	Fluctuations in near 360° curved and straight channel dye cells for high repetition rate copper vapour laser pumped dye laser. Journal Physics D: Applied Physics, 2006, 39, 2084-2089.	2.8	7
9	On the hyperfine spectral lines of an atomic copper vapor laser. Optics Communications, 2009, 282, 1393-1398.	2.1	6
10	Fluorescence fluctuation of Rhodamine 6G dye for high repetition rate laser excitation. Journal of Luminescence, 2013, 134, 607-613.	3.1	6
11	Design, modeling, and performance evaluation of a novel dye cell for a high repetition rate dye laser. Review of Scientific Instruments, 2012, 83, 105114.	1.3	5
12	Analysis of the spectral variation of a dye laser by gain medium inhomogeneity. Optics and Laser Technology, 2010, 42, 225-229.	4.6	4
13	Studies on characteristics of CO2 laser-GTAW hybrid welding of austenitic stainless steel. Journal of Laser Applications, 2010, 22, 79-85.	1.7	4
14	Study of a new dye cell for a high repetition rate dye laser. Optics and Laser Technology, 2013, 45, 256-261.	4.6	4
15	PHOTOEXCITED CARRIER LIFETIME IN DIRECT AND INDIRECT BAND GAP CRYSTALS ON THE Z-SCAN TECHNIQUE AT 532 nm. International Journal of Modern Physics B, 2007, 21, 3029-3034.	2.0	3
16	A study of flow characteristics of a high repetition rate dye laser gain medium. Laser Physics, 2014, 24, 025004.	1.2	3
17	On the coherence measurement of a narrow bandwidth dye laser. Applied Physics B: Lasers and Optics, 2013, 110, 483-489.	2.2	2

Influence of buffer gas pressure on the spectral width of the <inline-formula><math display="inline" overflow="scroll"><mrow><mn>510.6</mn><mtext></mtext><mi>nm</mi></mrow></line of an atomic copper vapor laser. Optical Engineering, 2009, 48, 094201. 18

#	Article	IF	CITATIONS
19	On the microstructure of thermal and fluid flow field in a lasing medium of a high repetition rate dye laser. Optik, 2010, 121, 1642-1648.	2.9	1
20	High repetition rate dye laser spectral fluctuations through dye cells. Optik, 2013, 124, 7027-7031.	2.9	1
21	Studies on thermo-optic characteristics of a high repetition rate dye laser. Optics and Laser Technology, 2013, 48, 309-314.	4.6	1
22	Studies on gain medium inhomogeneity and spectral fluctuations coupled with a high repetition rate dye laser. Laser Physics, 2013, 23, 125003.	1.2	1
23	A study of the influence of the input electrical power on the spectral width of the 510.6nm line of an atomic copper vapor laser. Optics and Laser Technology, 2010, 42, 866-872.	4.6	O
24	Spectral fluctuations of a high repetition rate dye laser through a flowing gain medium. Laser Physics, 2013, 23, 085008.	1.2	0
25	Spectral Intensity Variation by the Correlation Function of Refractive Index Fluctuations of the Liquid Medium. International Journal of Optics, 2013, 2013, 1-7.	1.4	O
26	Study of valence band electronic states of near-surface atoms of niobium used for superconducting cavity. Journal of Electron Spectroscopy and Related Phenomena, 2020, 240, 146942.	1.7	O