
Jarema Malicki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5242556/publications.pdf Version: 2024-02-01

Ιδρεμα Μαιιςκι

#	Article	IF	CITATIONS
1	The Cilium: Cellular Antenna and Central Processing Unit. Trends in Cell Biology, 2017, 27, 126-140.	7.9	320
2	Intraflagellar Transport Genes Are Essential for Differentiation and Survival of Vertebrate Sensory Neurons. Neuron, 2004, 42, 703-716.	8.1	256
3	elipsa is an early determinant of ciliogenesis that links the IFT particle to membrane-associated small GTPase Rab8. Nature Cell Biology, 2008, 10, 437-444.	10.3	203
4	Mouse Hox-2.2 specifies thoracic segmental identity in Drosophila embryos and larvae. Cell, 1990, 63, 961-967.	28.9	200
5	nagie oko, encoding a MAGUK-family protein, is essential for cellular patterning of the retina. Nature Genetics, 2002, 31, 150-157.	21.4	171
6	oko meduzy and Related crumbs Genes Are Determinants of Apical Cell Features in the Vertebrate Embryo. Current Biology, 2006, 16, 945-957.	3.9	157
7	Drosophila <i>asterless</i> and Vertebrate Cep152 Are Orthologs Essential for Centriole Duplication. Genetics, 2008, 180, 2081-2094.	2.9	147
8	Functional Interactions of Genes Mediating Convergent Extension,knypekandtrilobite,during the Partitioning of the Eye Primordium in Zebrafish. Developmental Biology, 1998, 203, 382-399.	2.0	128
9	Zebrafish N-cadherin, encoded by the glass onion locus, plays an essential role in retinal patterning. Developmental Biology, 2003, 259, 95-108.	2.0	120
10	High-throughput behavioral screening method for detecting auditory response defects in zebrafish. Journal of Neuroscience Methods, 2002, 118, 177-187.	2.5	105
11	A human HOX4B regulatory element provides head-specific expression in Drosophila embryos. Nature, 1992, 358, 345-347.	27.8	104
12	Small molecule screen for compounds that affect vascular development in the zebrafish retina. Mechanisms of Development, 2009, 126, 464-477.	1.7	103
13	The Apical Complex Couples Cell Fate and Cell Survival to Cerebral Cortical Development. Neuron, 2010, 66, 69-84.	8.1	97
14	Morphology and cell type heterogeneities of the inner ear epithelia in adult and juvenile zebrafish (Danio rerio). Journal of Comparative Neurology, 2001, 438, 173-190.	1.6	91
15	Nephrocystins and MKS proteins interact with IFT particle and facilitate transport of selected ciliary cargos. EMBO Journal, 2011, 30, 2532-2544.	7.8	91
16	Prostaglandin signalling regulates ciliogenesis by modulating intraflagellar transport. Nature Cell Biology, 2014, 16, 841-851.	10.3	84
17	Mechanism of positioning the cell nucleus in vertebrate photoreceptors. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 14819-14824.	7.1	81

18 The Zebrafish Cornea: Structure and Development. , 2006, 47, 4341.

JAREMA MALICKI

#	Article	IF	CITATIONS
19	Mutation of the Zebrafish glass onion Locus Causes Early Cell-Nonautonomous Loss of Neuroepithelial Integrity Followed by Severe Neuronal Patterning Defects in the Retina. Developmental Biology, 2001, 234, 454-469.	2.0	75
20	Kinesin-2 family in vertebrate ciliogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2388-2393.	7.1	74
21	Genetic analysis of photoreceptor cell development in the zebrafish retina. Mechanisms of Development, 2002, 110, 125-138.	1.7	73
22	What drives cell morphogenesis: A look inside the vertebrate photoreceptor. Developmental Dynamics, 2009, 238, 2115-2138.	1.8	72
23	From the cytoplasm into the cilium: Bon voyage. Organogenesis, 2014, 10, 138-157.	1.2	72
24	Harnessing the power of forward genetics – analysis of neuronal diversity and patterning in the zebrafish retina. Trends in Neurosciences, 2000, 23, 531-541.	8.6	68
25	Cell fate decisions and patterning in the vertebrate retina: the importance of timing, asymmetry, polarity and waves. Current Opinion in Neurobiology, 2004, 14, 15-21.	4.2	60
26	Genetic defects of pronephric cilia in zebrafish. Mechanisms of Development, 2007, 124, 605-616.	1.7	57
27	Analysis of the Retina in the Zebrafish Model. Methods in Cell Biology, 2010, 100, 153-204.	1.1	55
28	Analysis of Cilia Structure and Function in Zebrafish. Methods in Cell Biology, 2011, 101, 39-74.	1.1	55
29	Reverse genetic analysis of neurogenesis in the zebrafish retina. Developmental Biology, 2006, 293, 330-347.	2.0	49
30	<i>CRB1</i> Gene Mutations Are Associated with Keratoconus in Patients with Leber Congenital Amaurosis. , 2009, 50, 3185.		44
31	Genetic defects of GDF6 in the zebrafish out of sight mutant and in human eye developmental anomalies. BMC Genetics, 2010, 11, 102.	2.7	41
32	Retinal pattern and the genetic basis of its formation in zebrafish. Seminars in Cell and Developmental Biology, 2004, 15, 105-114.	5.0	40
33	The Role of Glypicans in Wnt Inhibitory Factor-1 Activity and the Structural Basis of Wif1's Effects on Wnt and Hedgehog Signaling. PLoS Genetics, 2012, 8, e1002503.	3.5	36
34	Analysis of gene function in the zebrafish retina. Methods, 2002, 28, 427-438.	3.8	35
35	An Automated Method for Cell Detection in Zebrafish. Neuroinformatics, 2008, 6, 5-21.	2.8	35
36	Forward and reverse genetic approaches to the analysis of eye development in zebrafish. Vision Research, 2002, 42, 527-533.	1.4	34

JAREMA MALICKI

#	Article	IF	CITATIONS
37	A Male with Unilateral Microphthalmia Reveals a Role for TMX3 in Eye Development. PLoS ONE, 2010, 5, e10565.	2.5	34
38	Unexpected Roles for Ciliary Kinesins and Intraflagellar Transport Proteins. Genetics, 2016, 203, 771-785.	2.9	32
39	Spatiotemporal features of neurogenesis in the retina of medaka, <i>Oryzias latipes</i> . Developmental Dynamics, 2008, 237, 3870-3881.	1.8	30
40	Functional analysis of the mouse homeobox gene HoxB9 in Drosophila development. Mechanisms of Development, 1993, 42, 139-150.	1.7	29
41	Loss of ift122, a Retrograde Intraflagellar Transport (IFT) Complex Component, Leads to Slow, Progressive Photoreceptor Degeneration Due to Inefficient Opsin Transport. Journal of Biological Chemistry, 2016, 291, 24465-24474.	3.4	29
42	A screen for genetic defects of the zebrafish ear. Mechanisms of Development, 2007, 124, 592-604.	1.7	27
43	Detection of blob objects in microscopic zebrafish images based on gradient vector diffusion. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2007, 71A, 835-845.	1.5	27
44	Analysis of the retina in the zebrafish model. Methods in Cell Biology, 2016, 134, 257-334.	1.1	25
45	Analysis of cilia structure and function in zebrafish. Methods in Cell Biology, 2016, 133, 179-227.	1.1	25
46	Mutations that affect the survival of selected amacrine cell subpopulations define a new class of genetic defects in the vertebrate retina. Developmental Biology, 2005, 285, 138-155.	2.0	23
47	Zebrafish <i>ale oko</i> , an essential determinant of sensory neuron survival and the polarity of retinal radial glia, encodes the p50 subunit of dynactin. Development (Cambridge), 2009, 136, 2955-2964.	2.5	22
48	Kinesin-2 family motors in the unusual photoreceptor cilium. Vision Research, 2012, 75, 33-36.	1.4	20
49	The Role of <i>crumbs</i> Genes in the Vertebrate Cornea. , 2010, 51, 4549.		13
50	Who drives the ciliary highway?. Bioarchitecture, 2012, 2, 111-117.	1.5	12
51	Apico-basal Polarity Determinants Encoded by crumbs Genes Affect Ciliary Shaft Protein Composition, IFT Movement Dynamics, and Cilia Length. Genetics, 2017, 207, 1041-1051.	2.9	9
52	Identification of additional outer segment targeting signals in zebrafish rod opsin. Journal of Cell Science, 2021, 134, .	2.0	3
53	Cell Polarity in Differentiation and Patterning of Photoreceptors. , 2014, , 245-273.		0