Lianzhou Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5242276/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Titania-based photocatalysts—crystal growth, doping and heterostructuring. Journal of Materials Chemistry, 2010, 20, 831-843.	6.7	1,028
2	Two-dimensional graphene analogues for biomedical applications. Chemical Society Reviews, 2015, 44, 2681-2701.	18.7	786
3	Recent advances in 2D materials for photocatalysis. Nanoscale, 2016, 8, 6904-6920.	2.8	680
4	Redoxable Nanosheet Crystallites of MnO2Derived via Delamination of a Layered Manganese Oxide. Journal of the American Chemical Society, 2003, 125, 3568-3575.	6.6	656
5	Titanium Oxide Nanosheets: Graphene Analogues with Versatile Functionalities. Chemical Reviews, 2014, 114, 9455-9486.	23.0	557
6	Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. Chemical Reviews, 2019, 119, 5192-5247.	23.0	551
7	In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1706923.	7.8	543
8	Nitrogen-doped Ti 3 C 2 T x MXene electrodes for high-performance supercapacitors. Nano Energy, 2017, 38, 368-376.	8.2	528
9	Selective Breaking of Hydrogen Bonds of Layered Carbon Nitride for Visible Light Photocatalysis. Advanced Materials, 2016, 28, 6471-6477.	11.1	507
10	Hollow Nanostructures for Photocatalysis: Advantages and Challenges. Advanced Materials, 2019, 31, e1801369.	11.1	506
11	Enhanced photocatalytic hydrogen evolution by prolonging the lifetime of carriers in ZnO/CdS heterostructures. Chemical Communications, 2009, , 3452.	2.2	476
12	Resistive Switching Behavior in Organic–Inorganic Hybrid CH ₃ NH ₃ PbI _{3<i>â^²x</i>} Cl <i>_x</i> Perovskite for Resistive Random Access Memory Devices. Advanced Materials, 2015, 27, 6170-6175.	11.1	469
13	Inorganic perovskite photocatalysts for solar energy utilization. Chemical Society Reviews, 2016, 45, 5951-5984.	18.7	434
14	New BiVO ₄ Dual Photoanodes with Enriched Oxygen Vacancies for Efficient Solarâ€Driven Water Splitting. Advanced Materials, 2018, 30, e1800486.	11.1	414
15	Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1â^'xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nature Energy, 2020, 5, 79-88.	19.8	412
16	Breakâ€up of Twoâ€Dimensional MnO ₂ Nanosheets Promotes Ultrasensitive pHâ€Triggered Theranostics of Cancer. Advanced Materials, 2014, 26, 7019-7026.	11.1	404
17	Nanosized anatase TiO2 single crystals for enhanced photocatalytic activity. Chemical Communications, 2010, 46, 755-757.	2.2	403
18	Enhanced Photoactivity of Oxygen-Deficient Anatase TiO ₂ Sheets with Dominant {001} Facets. Journal of Physical Chemistry C, 2009, 113, 21784-21788.	1.5	376

#	Article	IF	CITATIONS
19	2-Methylimidazole-Derived Ni–Co Layered Double Hydroxide Nanosheets as High Rate Capability and High Energy Density Storage Material in Hybrid Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 15510-15524.	4.0	374
20	An Electrochemically Treated BiVO ₄ Photoanode for Efficient Photoelectrochemical Water Splitting. Angewandte Chemie - International Edition, 2017, 56, 8500-8504.	7.2	369
21	Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites. Nano Research, 2016, 9, 692-702.	5.8	351
22	MoS ₂ /Graphene Nanosheets from Commercial Bulky MoS ₂ and Graphite as Anode Materials for High Rate Sodiumâ€lon Batteries. Advanced Energy Materials, 2018, 8, 1702383.	10.2	350
23	Hollow Mesoporous Organosilica Nanoparticles: A Generic Intelligent Framework-Hybridization Approach for Biomedicine. Journal of the American Chemical Society, 2014, 136, 16326-16334.	6.6	338
24	Twins in Cd1â^'xZnxS solid solution: Highly efficient photocatalyst for hydrogen generation from water. Energy and Environmental Science, 2011, 4, 1372.	15.6	332
25	Nitrogen Doped Sr ₂ Ta ₂ O ₇ Coupled with Graphene Sheets as Photocatalysts for Increased Photocatalytic Hydrogen Production. ACS Nano, 2011, 5, 3483-3492.	7.3	315
26	Non-metal doping of transition metal oxides for visible-light photocatalysis. Catalysis Today, 2014, 225, 111-135.	2.2	311
27	Design of Photobioreactors for Mass Cultivation of Photosynthetic Organisms. Engineering, 2017, 3, 318-329.	3.2	310
28	Addressing Toxicity of Lead: Progress and Applications of Lowâ€Toxic Metal Halide Perovskites and Their Derivatives. Advanced Energy Materials, 2017, 7, 1602512.	10.2	290
29	Preparation and Characterization of ZnO Clusters inside Mesoporous Silica. Chemistry of Materials, 2000, 12, 1408-1413.	3.2	287
30	Band-to-Band Visible-Light Photon Excitation and Photoactivity Induced by Homogeneous Nitrogen Doping in Layered Titanates. Chemistry of Materials, 2009, 21, 1266-1274.	3.2	284
31	Artificial photosynthesis as a frontier technology for energy sustainability. Energy and Environmental Science, 2013, 6, 1074.	15.6	284
32	Stable Hematite Nanosheet Photoanodes for Enhanced Photoelectrochemical Water Splitting. Advanced Materials, 2016, 28, 6405-6410.	11.1	275
33	Understanding the Roles of Oxygen Vacancies in Hematiteâ€Based Photoelectrochemical Processes. Angewandte Chemie - International Edition, 2019, 58, 1030-1034.	7.2	268
34	An Innovative Freezeâ€Dried Reduced Graphene Oxide Supported SnS ₂ Cathode Active Material for Aluminumâ€lon Batteries. Advanced Materials, 2017, 29, 1606132.	11.1	263
35	g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catalysis Today, 2018, 300, 160-172.	2.2	263
36	Periodic Mesoporous Organosilica Hollow Spheres with Tunable Wall Thickness. Journal of the American Chemical Society, 2006, 128, 6320-6321.	6.6	262

#	Article	IF	CITATIONS
37	A general, one-step and template-free synthesis of sphere-like zinc ferrite nanostructures with enhanced photocatalytic activity for dye degradation. Journal of Colloid and Interface Science, 2011, 358, 102-108.	5.0	250
38	A Binderâ€Free and Free‣tanding Cobalt Sulfide@Carbon Nanotube Cathode Material for Aluminumâ€ion Batteries. Advanced Materials, 2018, 30, 1703824.	11.1	250
39	New Ironâ€Cobalt Oxide Catalysts Promoting BiVO ₄ Films for Photoelectrochemical Water Splitting. Advanced Functional Materials, 2018, 28, 1802685.	7.8	248
40	Carbonâ€Based Metalâ€Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions. Advanced Materials, 2019, 31, e1805367.	11.1	247
41	Synergistic crystal facet engineering and structural control of WO3 films exhibiting unprecedented photoelectrochemical performance. Nano Energy, 2016, 24, 94-102.	8.2	243
42	Stable CoSe ₂ /carbon nanodice@reduced graphene oxide composites for high-performance rechargeable aluminum-ion batteries. Energy and Environmental Science, 2018, 11, 2341-2347.	15.6	240
43	In Situ Formation of Oxygen Vacancies Achieving Nearâ€Complete Charge Separation in Planar BiVO ₄ Photoanodes. Advanced Materials, 2020, 32, e2001385.	11.1	236
44	An Unusual Strong Visibleâ€Light Absorption Band in Red Anatase TiO ₂ Photocatalyst Induced by Atomic Hydrogenâ€Occupied Oxygen Vacancies. Advanced Materials, 2018, 30, 1704479.	11.1	231
45	Review on areal capacities and long-term cycling performances of lithium sulfur battery at high sulfur loading. Energy Storage Materials, 2019, 18, 289-310.	9.5	231
46	Synthesis of Phosphorusâ€Doped Graphene and its Wide Potential Window in Aqueous Supercapacitors. Chemistry - A European Journal, 2015, 21, 80-85.	1.7	230
47	Composition-dependent photoluminescence intensity and prolonged recombination lifetime of perovskite CH ₃ NH ₃ PbBr _{3â^*x} Cl _x films. Chemical Communications, 2014, 50, 11727-11730.	2.2	225
48	Oriented Built-in Electric Field Introduced by Surface Gradient Diffusion Doping for Enhanced Photocatalytic H ₂ Evolution in CdS Nanorods. Nano Letters, 2017, 17, 3803-3808.	4.5	225
49	Moltenâ€Saltâ€Mediated Synthesis of an Atomic Nickel Coâ€catalyst on TiO ₂ for Improved Photocatalytic H ₂ Evolution. Angewandte Chemie - International Edition, 2020, 59, 7230-7234.	7.2	221
50	In Situ Growth of a ZnO Nanowire Network within a TiO ₂ Nanoparticle Film for Enhanced Dyeâ€Sensitized Solar Cell Performance. Advanced Materials, 2012, 24, 5850-5856.	11.1	218
51	A Freestanding 3D Heterostructure Film Stitched by MOFâ€Derived Carbon Nanotube Microsphere Superstructure and Reduced Graphene Oxide Sheets: A Superior Multifunctional Electrode for Overall Water Splitting and Zn–Air Batteries. Advanced Materials, 2020, 32, e2003313.	11.1	216
52	Photocatalytic and Photoelectrochemical Systems: Similarities and Differences. Advanced Materials, 2020, 32, e1904717.	11.1	213
53	Shell-in-shell TiO2 hollow spheres synthesized by one-pot hydrothermal method for dye-sensitized solar cell application. Energy and Environmental Science, 2011, 4, 3565.	15.6	212
54	Two-dimensional non-carbonaceous materials-enabled efficient photothermal cancer therapy. Nano Today, 2016, 11, 292-308.	6.2	210

#	Article	IF	CITATIONS
55	Positive and Negative Lattice Shielding Effects Co-existing in Gd (III) Ion Doped Bifunctional Upconversion Nanoprobes. Advanced Functional Materials, 2011, 21, 4285-4294.	7.8	201
56	Bismuth-based photocatalysts for solar energy conversion. Journal of Materials Chemistry A, 2020, 8, 24307-24352.	5.2	200
57	Synthesis of anatase TiO2 rods with dominant reactive {010} facets for the photoreduction of CO2 to CH4 and use in dye-sensitized solar cells. Chemical Communications, 2011, 47, 8361.	2.2	196
58	Rational design of CdS@ZnO core-shell structure via atomic layer deposition for drastically enhanced photocatalytic H2 evolution with excellent photostability. Nano Energy, 2017, 39, 183-191.	8.2	195
59	Fabrication of Controllable Ultrathin Hollow Shells by Layer-by-Layer Assembly of Exfoliated Titania Nanosheets on Polymer Templates. Chemistry of Materials, 2002, 14, 4827-4832.	3.2	192
60	Novel Boron Nitride Hollow Nanoribbons. ACS Nano, 2008, 2, 2183-2191.	7.3	192
61	ZnO–CdS@Cd Heterostructure for Effective Photocatalytic Hydrogen Generation. Advanced Energy Materials, 2012, 2, 42-46.	10.2	191
62	Nanosized Anatase TiO ₂ Single Crystals with Tunable Exposed (001) Facets for Enhanced Energy Conversion Efficiency of Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2011, 21, 4167-4172.	7.8	186
63	Sandwichâ€Like Ultrathin TiS ₂ Nanosheets Confined within N, S Codoped Porous Carbon as an Effective Polysulfide Promoter in Lithiumâ€Sulfur Batteries. Advanced Energy Materials, 2019, 9, 1901872.	10.2	186
64	A study of the tribological behaviour of TiO2 nano-additive water-based lubricants. Tribology International, 2017, 109, 398-408.	3.0	180
65	Unique physicochemical properties of two-dimensional light absorbers facilitating photocatalysis. Chemical Society Reviews, 2018, 47, 6410-6444.	18.7	178
66	Carbon-vacancy modified graphitic carbon nitride: enhanced CO ₂ photocatalytic reduction performance and mechanism probing. Journal of Materials Chemistry A, 2019, 7, 1556-1563.	5.2	178
67	Recent Progress on Visible Light Responsive Heterojunctions for Photocatalytic Applications. Journal of Materials Science and Technology, 2017, 33, 1-22.	5.6	176
68	2D Porous TiO ₂ Singleâ€Crystalline Nanostructure Demonstrating High Photoâ€Electrochemical Water Splitting Performance. Advanced Materials, 2018, 30, e1705666.	11.1	176
69	Boron-doped graphitic carbon nitride nanosheets for enhanced visible light photocatalytic water splitting. Dalton Transactions, 2017, 46, 10714-10720.	1.6	175
70	Fabrication and Characterization of Multilayer Ultrathin Films of Exfoliated MnO2 Nanosheets and Polycations. Chemistry of Materials, 2003, 15, 2873-2878.	3.2	173
71	Hollow Anatase TiO ₂ Single Crystals and Mesocrystals with Dominant {101} Facets for Improved Photocatalysis Activity and Tuned Reaction Preference. ACS Catalysis, 2012, 2, 1854-1859.	5.5	172
72	Stackingâ€Layerâ€Number Dependence of Water Adsorption in 3D Ordered Closeâ€Packed g ₃ N ₄ Nanosphere Arrays for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2019, 58, 4587-4591.	7.2	172

#	Article	IF	CITATIONS
73	Efficiency Accreditation and Testing Protocols for Particulate Photocatalysts toward Solar Fuel Production. Joule, 2021, 5, 344-359.	11.7	165
74	Recent Progress on Integrated Energy Conversion and Storage Systems. Advanced Science, 2017, 4, 1700104.	5.6	162
75	Carbonâ€Coated Na _{3.32} Fe _{2.34} (P ₂ O ₇) ₂ Cathode Material for Highâ€Rate and Longâ€Life Sodiumâ€Ion Batteries. Advanced Materials, 2017, 29, 1605535	. 11.1	161
76	Lithiationâ€Induced Vacancy Engineering of Co ₃ O ₄ with Improved Faradic Reactivity for Highâ€Performance Supercapacitor. Advanced Functional Materials, 2020, 30, 2004172.	7.8	156
77	High-Performance PEDOT:PSS Flexible Thermoelectric Materials and Their Devices by Triple Post-Treatments. Chemistry of Materials, 2019, 31, 5238-5244.	3.2	153
78	Understanding the Origin of Li ₂ MnO ₃ Activation in Liâ€Rich Cathode Materials for Lithiumâ€Ion Batteries. Advanced Functional Materials, 2015, 25, 7488-7496.	7.8	151
79	Polar interface-induced improvement in high photocatalytic hydrogen evolution over ZnO–CdS heterostructures. Energy and Environmental Science, 2011, 4, 3976.	15.6	147
80	Bifunctional resistive switching behavior in an organolead halide perovskite based Ag/CH ₃ NH ₃ PbI _{3â^'x} Cl _x /FTO structure. Journal of Materials Chemistry C, 2016, 4, 7824-7830.	2.7	145
81	Solar energy conversion on g-C3N4 photocatalyst: Light harvesting, charge separation, and surface kinetics. Journal of Energy Chemistry, 2018, 27, 1111-1123.	7.1	144
82	Au decorated hollow ZnO@ZnS heterostructure for enhanced photocatalytic hydrogen evolution: The insight into the roles of hollow channel and Au nanoparticles. Applied Catalysis B: Environmental, 2019, 244, 748-757.	10.8	144
83	Activation of Photocatalytic Water Oxidation on N-Doped ZnO Bundle-like Nanoparticles under Visible Light. Journal of Physical Chemistry C, 2013, 117, 4937-4942.	1.5	143
84	Two-dimensional g-C3N4/Ca2Nb2TaO10 nanosheet composites for efficient visible light photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2017, 202, 184-190.	10.8	143
85	3D Hierarchical Rutile TiO2 and Metal-free Organic Sensitizer Producing Dye-sensitized Solar Cells 8.6% Conversion Efficiency. Scientific Reports, 2014, 4, 5769.	1.6	142
86	Characterization of MCM-41 mesoporous molecular sieves containing copper and zinc and their catalytic performance in the selective oxidation of alcohols to aldehydes. Microporous and Mesoporous Materials, 2002, 54, 113-126.	2.2	139
87	Cyclic Voltammetry in Lithium–Sulfur Batteries—Challenges and Opportunities. Energy Technology, 2019, 7, 1801001.	1.8	138
88	Liquid-phase sintering of lead halide perovskites and metal-organic framework glasses. Science, 2021, 374, 621-625.	6.0	137
89	Tin nanoparticles encapsulated in graphene backboned carbonaceous foams as high-performance anodes for lithium-ion and sodium-ion storage. Nano Energy, 2016, 22, 232-240.	8.2	136
90	Nâ€Doped CsTaWO ₆ as a New Photocatalyst for Hydrogen Production from Water Splitting Under Solar Irradiation. Advanced Functional Materials, 2011, 21, 126-132.	7.8	135

#	Article	IF	CITATIONS
91	Synthesis of a Liâ^'Mn-oxide with Disordered Layer Stacking through Flocculation of Exfoliated MnO2Nanosheets, and Its Electrochemical Properties. Chemistry of Materials, 2003, 15, 4508-4514.	3.2	130
92	Electronic and optical properties of lead-free hybrid double perovskites for photovoltaic and optoelectronic applications. Scientific Reports, 2019, 9, 718.	1.6	130
93	Enhanced perovskite electronic properties via a modified lead(<scp>ii</scp>) chloride Lewis acid–base adduct and their effect in high-efficiency perovskite solar cells. Journal of Materials Chemistry A, 2017, 5, 5195-5203.	5.2	128
94	Integrated Photorechargeable Energy Storage System: Nextâ€Generation Power Source Driving the Future. Advanced Energy Materials, 2020, 10, 1903930.	10.2	128
95	Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives. Advanced Materials, 2022, 34, e2105958.	11.1	128
96	Iodine doped anatase TiO2 photocatalyst with ultra-long visible light response: correlation between geometric/electronic structures and mechanisms. Journal of Materials Chemistry, 2009, 19, 2822.	6.7	127
97	Facile Synthesis of Highly Efficient One-Dimensional Plasmonic Photocatalysts through Ag@Cu ₂ O Core–Shell Heteronanowires. ACS Applied Materials & Interfaces, 2014, 6, 15716-15725.	4.0	127
98	Enhanced CO2 photocatalytic reduction on alkali-decorated graphitic carbon nitride. Applied Catalysis B: Environmental, 2017, 216, 146-155.	10.8	127
99	Friction and wear characteristics of TiO 2 nano-additive water-based lubricant on ferritic stainless steel. Tribology International, 2018, 117, 24-38.	3.0	126
100	Understanding of carrier dynamics, heterojunction merits and device physics: towards designing efficient carrier transport layer-free perovskite solar cells. Chemical Society Reviews, 2020, 49, 354-381.	18.7	125
101	Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation. Journal of Materials Chemistry A, 2016, 4, 2783-2800.	5.2	120
102	Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes. Journal of Membrane Science, 2011, 368, 48-53.	4.1	118
103	Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency. Nano Energy, 2019, 64, 103937.	8.2	118
104	Visibleâ€Light Responsive TiO ₂ â€Based Materials for Efficient Solar Energy Utilization. Advanced Energy Materials, 2021, 11, 2003303.	10.2	118
105	Controllable growth of SnS ₂ nanostructures on nanocarbon surfaces for lithium-ion and sodium-ion storage with high rate capability. Journal of Materials Chemistry A, 2018, 6, 1462-1472.	5.2	117
106	Thin‣ayered Photocatalysts. Advanced Functional Materials, 2020, 30, 1910005.	7.8	117
107	Faster Activation and Slower Capacity/Voltage Fading: A Bifunctional Urea Treatment on Lithiumâ€Rich Cathode Materials. Advanced Functional Materials, 2020, 30, 1909192.	7.8	117
108	Photocatalytic TiO2/adsorbent nanocomposites prepared via wet chemical impregnation for wastewater treatment: A review. Applied Catalysis A: General, 2009, 371, 1-9.	2.2	116

#	Article	IF	CITATIONS
109	Efficient Promotion of Anatase TiO2 Photocatalysis via Bifunctional Surface-Terminating Tiâ^'Oâ^'Bâ^'N Structures. Journal of Physical Chemistry C, 2009, 113, 12317-12324.	1.5	115
110	Photocatalytic degradation of gaseous toluene over ZnAl2O4 prepared by different methods: A comparative study. Journal of Hazardous Materials, 2011, 186, 2089-2096.	6.5	115
111	Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Chemical Communications, 2013, 49, 3019.	2.2	115
112	Multifunctional Graphene Oxideâ€based Triple Stimuliâ€Responsive Nanotheranostics. Advanced Functional Materials, 2014, 24, 4386-4396.	7.8	115
113	Lithium and Sodium Storage on Graphitic Carbon Nitride. Journal of Physical Chemistry C, 2015, 119, 21921-21927.	1.5	115
114	Enhanced CH4 selectivity in CO2 photocatalytic reduction over carbon quantum dots decorated and oxygen doping g-C3N4. Nano Research, 2019, 12, 2749-2759.	5.8	115
115	Low-temperature synthesis of CdS/TiO2 composite photocatalysts: Influence of synthetic procedure on photocatalytic activity under visible light. Journal of Molecular Catalysis A, 2012, 356, 53-60.	4.8	114
116	Fabrication of g ₃ N ₄ /Au/Câ€TiO ₂ Hollow Structures as Visibleâ€Lightâ€Driven Zâ€Scheme Photocatalysts with Enhanced Photocatalytic H ₂ Evolution. ChemCatChem, 2017, 9, 3752-3761.	1.8	114
117	CsPb(I Br1â^)3 solar cells. Science Bulletin, 2019, 64, 1532-1539.	4.3	114
118	New Binderâ€Free Metal Phosphide–Carbon Felt Composite Anodes for Sodiumâ€Ion Battery. Advanced Energy Materials, 2018, 8, 1801197.	10.2	113
119	Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis. Journal of Materials Chemistry, 2009, 19, 6590.	6.7	112
120	Sulfur doped anatase TiO2 single crystals with a high percentage of {0 0 1} facets. Journal of Colloid and Interface Science, 2010, 349, 477-483.	5.0	112
121	Oligomeric Silica-Wrapped Perovskites Enable Synchronous Defect Passivation and Grain Stabilization for Efficient and Stable Perovskite Photovoltaics. ACS Energy Letters, 2019, 4, 1231-1240.	8.8	111
122	Upconversion fluorescent carbon nanodots enriched with nitrogen for light harvesting. Journal of Materials Chemistry, 2012, 22, 15522.	6.7	110
123	Nanoparticles enwrapped with nanotubes: A unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water. Journal of Materials Chemistry, 2011, 21, 5134.	6.7	108
124	MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage Materials, 2020, 26, 550-559.	9.5	108
125	Lattice distortion induced internal electric field in TiO2 photoelectrode for efficient charge separation and transfer. Nature Communications, 2020, 11, 2129.	5.8	108
126	TiO ₂ films with oriented anatase {001} facets and their photoelectrochemical behavior as CdS nanoparticle sensitized photoanodes. Journal of Materials Chemistry, 2011, 21, 869-873.	6.7	107

#	Article	IF	CITATIONS
127	A General Single ource Route for the Preparation of Hollow Nanoporous Metal Oxide Structures. Angewandte Chemie - International Edition, 2009, 48, 7048-7051.	7.2	106
128	Stable and Lowâ€Cost Mesoscopic CH ₃ NH ₃ PbI ₂ Br Perovskite Solar Cells by using a Thin Poly(3â€hexylthiophene) Layer as a Hole Transporter. Chemistry - A European Journal, 2015, 21, 434-439.	1.7	106
129	An Electrochemically Treated BiVO ₄ Photoanode for Efficient Photoelectrochemical Water Splitting. Angewandte Chemie, 2017, 129, 8620-8624.	1.6	106
130	Comparative photocatalytic degradation of estrone in water by ZnO and TiO2 under artificial UVA and solar irradiation. Chemical Engineering Journal, 2012, 213, 150-162.	6.6	105
131	Unique Advantages of Exfoliated 2D Nanosheets for Tailoring the Functionalities of Nanocomposites. Journal of Physical Chemistry Letters, 2014, 5, 4149-4161.	2.1	104
132	Confining ultrafine tin monophosphide in Ti3C2Tx interlayers for rapid and stable sodium ion storage. EScience, 2021, 1, 203-211.	25.0	103
133	Yolk-shell Si/C composites with multiple Si nanoparticles encapsulated into double carbon shells as lithium-ion battery anodes. Journal of Energy Chemistry, 2019, 32, 124-130.	7.1	102
134	Self-Assembled Multilayers of Titania Nanoparticles and Nanosheets with Polyelectrolytes. Chemistry of Materials, 2003, 15, 807-812.	3.2	99
135	Progress and Perspective in Lowâ€Dimensional Metal Halide Perovskites for Optoelectronic Applications. Solar Rrl, 2018, 2, 1700186.	3.1	98
136	Nitrogen-doped titania nanosheets towards visible light response. Chemical Communications, 2009, , 1383.	2.2	95
137	Biomimetic Sn ₄ P ₃ Anchored on Carbon Nanotubes as an Anode for High-Performance Sodium-Ion Batteries. ACS Nano, 2020, 14, 8826-8837.	7.3	95
138	An Unusual Red Carbon Nitride to Boost the Photoelectrochemical Performance of Wide Bandgap Photoanodes. Advanced Functional Materials, 2018, 28, 1805698.	7.8	94
139	Inorganic Multilayer Films of Manganese Oxide Nanosheets and Aluminum Polyoxocations: Fabrication, Structure, and Electrochemical Behavior. Chemistry of Materials, 2005, 17, 1352-1357.	3.2	92
140	Nanostructure sensitization of transition metal oxides for visible-light photocatalysis. Beilstein Journal of Nanotechnology, 2014, 5, 696-710.	1.5	92
141	Transition from the Tetragonal to Cubic Phase of Organohalide Perovskite: The Role of Chlorine in Crystal Formation of CH ₃ NH ₃ Pbl ₃ on TiO ₂ Substrates. Journal of Physical Chemistry Letters, 2015, 6, 4379-4384.	2.1	91
142	Nitrogen and Phosphorous Coâ€Đoped Graphene Monolith for Supercapacitors. ChemSusChem, 2016, 9, 513-520.	3.6	90
143	Photocatalytic degradation of gaseous toluene over Ag-doping TiO2 nanotube powder prepared by anodization coupled with impregnation method. Chemosphere, 2011, 83, 674-679.	4.2	89
144	Understanding the Roles of Oxygen Vacancies in Hematiteâ€Based Photoelectrochemical Processes. Angewandte Chemie, 2019, 131, 1042-1046.	1.6	89

#	Article	IF	CITATIONS
145	Photocatalytic Hydrogen Production from Water Using N-Doped Ba ₅ Ta ₄ O ₁₅ under Solar Irradiation. Journal of Physical Chemistry C, 2011, 115, 15674-15678.	1.5	88
146	Electrochemical and Structural Study of Layered P2â€Type Na _{2/3} Ni _{1/3} Mn _{2/3} O ₂ as Cathode Material for Sodiumâ€Ion Battery. Chemistry - an Asian Journal, 2015, 10, 661-666.	1.7	88
147	Low-temperature processed solar cells with formamidinium tin halide perovskite/fullerene heterojunctions. Nano Research, 2016, 9, 1570-1577.	5.8	88
148	Bismuth oxychloride hollow microspheres with high visible light photocatalytic activity. Nano Research, 2016, 9, 593-601.	5.8	88
149	On the engineering part of solar hydrogen production from water splitting: Photoreactor design. Chemical Engineering Science, 2013, 104, 125-146.	1.9	87
150	Constructing an n/n ⁺ homojunction in a monolithic perovskite film for boosting charge collection in inverted perovskite photovoltaics. Energy and Environmental Science, 2021, 14, 4048-4058.	15.6	87
151	A new type of carbon nitride-based polymer composite for enhanced photocatalytic hydrogen production. Chemical Communications, 2014, 50, 6762-6764.	2.2	86
152	Dualâ€lonâ€Diffusion Induced Degradation in Leadâ€Free Cs ₂ AgBiBr ₆ Double Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2002342.	7.8	86
153	Ultrathin hollow nanoshells of manganese oxide. Chemical Communications, 2004, , 1074.	2.2	85
154	Recent Progress and Future Trends of Aluminum Batteries. Energy Technology, 2019, 7, 86-106.	1.8	85
155	Surface Ligands Stabilized Lead Halide Perovskite Quantum Dot Photocatalyst for Visible Lightâ€Driven Hydrogen Generation. Advanced Functional Materials, 2019, 29, 1905683.	7.8	85
156	High-rate lithium storage of anatase TiO2 crystals doped with both nitrogen and sulfur. Chemical Communications, 2013, 49, 3461.	2.2	84
157	Preparation of porous composite ion-exchange membranes for desalination application. Journal of Materials Chemistry, 2011, 21, 7401.	6.7	83
158	Cubic CeO2 nanoparticles as mirror-like scattering layers for efficient light harvesting in dye-sensitized solar cells. Chemical Communications, 2012, 48, 7386.	2.2	83
159	Improved photocatalytic activity of g-C ₃ N ₄ derived from cyanamide–urea solution. RSC Advances, 2015, 5, 8323-8328.	1.7	83
160	Singleâ€Crystalline Nanomesh Tantalum Nitride Photocatalyst with Improved Hydrogenâ€Evolving Performance. Advanced Energy Materials, 2018, 8, 1701605.	10.2	83
161	Strategies for Modifying TiO ₂ Based Electron Transport Layers to Boost Perovskite Solar Cells. ACS Sustainable Chemistry and Engineering, 2019, 7, 4586-4618.	3.2	83
162	Identifying Copper Vacancies and Their Role in the CuO Based Photocathode for Water Splitting. Angewandte Chemie - International Edition, 2019, 58, 17604-17609.	7.2	82

#	Article	IF	CITATIONS
163	Review of recent progress in unassisted photoelectrochemical water splitting: from material modification to configuration design. Journal of Photonics for Energy, 2016, 7, 012006.	0.8	81
164	Synthesis of Ordered Cubic Periodic Mesoporous Organosilicas with Ultra-Large Pores. Chemistry of Materials, 2007, 19, 1870-1876.	3.2	80
165	In-doped Bi2Se3 hierarchical nanostructures as anode materials for Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 7109.	5.2	80
166	Preparation of porous ion-exchange membranes (IEMs) and their characterizations. Journal of Membrane Science, 2011, 371, 37-44.	4.1	79
167	An Integrated Photoelectrochemical–Chemical Loop for Solarâ€Driven Overall Splitting of Hydrogen Sulfide. Angewandte Chemie - International Edition, 2014, 53, 4399-4403.	7.2	79
168	Recent Progress on Photoâ€Electrocatalytic Reduction of Carbon Dioxide. Particle and Particle Systems Characterization, 2018, 35, 1700371.	1.2	79
169	Scalable Lowâ€Cost SnS ₂ Nanosheets as Counter Electrode Building Blocks for Dyeâ€Sensitized Solar Cells. Chemistry - A European Journal, 2014, 20, 8670-8676.	1.7	78
170	The impact of the molecular weight on the electrochemical properties of poly(TEMPO methacrylate). Polymer Chemistry, 2017, 8, 1815-1823.	1.9	78
171	Single-crystal structures of highly -exchanged, fully deaminated, and fully Tl+-exchanged zeolite Y (FAU, Si/Al=1.56), all fully dehydrated. Microporous and Mesoporous Materials, 2010, 129, 11-21.	2.2	76
172	Roomâ€Temperature Synthesis of Cu _{2â^'<i>x</i>} E (E=S, Se) Nanotubes with Hierarchical Architecture as Highâ€Performance Counter Electrodes of Quantumâ€Dotâ€Sensitized Solar Cells. Chemistry - A European Journal, 2015, 21, 1055-1063.	1.7	74
173	Hydroxyl-regulated BiOI nanosheets with a highly positive valence band maximum for improved visible-light photocatalytic performance. Applied Catalysis B: Environmental, 2020, 268, 118390.	10.8	74
174	Formation, Detection, and Function of Oxygen Vacancy in Metal Oxides for Solar Energy Conversion. Advanced Functional Materials, 2022, 32, 2109503.	7.8	74
175	Layer-by-layer assembly and electrochemical properties of sandwiched film of manganese oxide nanosheet and carbon nanotube. Carbon, 2009, 47, 1534-1542.	5.4	73
176	Photocatalytic water oxidation on F, N co-doped TiO2 with dominant exposed {001} facets under visible light. Chemical Communications, 2011, 47, 11742.	2.2	73
177	Intermarriage of Halide Perovskites and Metalâ€Organic Framework Crystals. Angewandte Chemie - International Edition, 2020, 59, 19434-19449.	7.2	73
178	Boosting the efficiency of quantum dot sensitized solar cells up to 7.11% through simultaneous engineering of photocathode and photoanode. Nano Energy, 2015, 13, 609-619.	8.2	72
179	Strategies for Efficient Solar Water Splitting Using Carbon Nitride. Chemistry - an Asian Journal, 2017, 12, 1421-1434.	1.7	72
180	Two-Dimensional Titanium Carbonitride Mxene for High-Performance Sodium Ion Batteries. ACS Applied Nano Materials, 2018, 1, 6854-6863.	2.4	71

#	Article	IF	CITATIONS
181	Enhanced efficacy of defect passivation and charge extraction for efficient perovskite photovoltaics with a small open circuit voltage loss. Journal of Materials Chemistry A, 2019, 7, 9025-9033.	5.2	71
182	Probing Facet-Dependent Surface Defects in MAPbI ₃ Perovskite Single Crystals. Journal of Physical Chemistry C, 2019, 123, 14144-14151.	1.5	70
183	Synthesis of single silica nanotubes in the presence of citric acid. Journal of Materials Chemistry, 2001, 11, 1465-1468.	6.7	68
184	Drastically enhanced photocatalytic activity in nitrogen doped mesoporous TiO2 with abundant surface states. Journal of Colloid and Interface Science, 2009, 334, 171-175.	5.0	68
185	Synthesis of composite ion-exchange membranes and their electrochemical properties for desalination applications. Journal of Materials Chemistry, 2010, 20, 4669.	6.7	68
186	A hybrid photoelectrode with plasmonic Au@TiO ₂ nanoparticles for enhanced photoelectrochemical water splitting. Journal of Materials Chemistry A, 2015, 3, 20127-20133.	5.2	68
187	Preparation of new sulfur-doped and sulfur/nitrogen co-doped CsTaWO6 photocatalysts for hydrogen production from water under visible light. Journal of Materials Chemistry, 2011, 21, 8871.	6.7	66
188	Modification of Li ₂ MnSiO ₄ cathode materials for lithium-ion batteries: a review. Journal of Materials Chemistry A, 2017, 5, 10772-10797.	5.2	66
189	The Influence of Inorganic Filler Particle Size on Composite Ion-Exchange Membranes for Desalination. Journal of Physical Chemistry C, 2011, 115, 15124-15132.	1.5	65
190	Enriching CO ₂ Activation Sites on Graphitic Carbon Nitride with Simultaneous Introduction of Electronâ€Transfer Promoters for Superior Photocatalytic CO ₂ â€ŧoâ€Fuel Conversion. Advanced Sustainable Systems, 2017, 1, 1700003.	2.7	65
191	Photoreduction of CO2 on ZIF-8/TiO2 nanocomposites in a gaseous photoreactor under pressure swing. Applied Catalysis B: Environmental, 2017, 218, 672-678.	10.8	65
192	Suppressing Interfacial Charge Recombination in Electronâ€Transport‣ayerâ€Free Perovskite Solar Cells to Give an Efficiency Exceeding 21 %. Angewandte Chemie - International Edition, 2020, 59, 20980-20987.	7.2	65
193	Role of oxygen vacancy in metal oxide based photoelectrochemical water splitting. EcoMat, 2021, 3, e12075.	6.8	65
194	Synthesis, properties, and optical applications of noble metal nanoparticle-biomolecule conjugates. Science Bulletin, 2012, 57, 238-246.	1.7	64
195	Ion-exchangeable semiconductor materials for visible light-induced photocatalysis. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 18, 32-49.	5.6	64
196	Experiments and CFD for the propeller wake of a generic submarine operating near the surface. Ocean Engineering, 2020, 206, 107304.	1.9	64
197	Photoluminescence properties of lamellar aggregates of titania nanosheets accommodating rare earth ions. Applied Physics Letters, 2004, 85, 4187-4189.	1.5	63
198	Analysis of TiO 2 nano-additive water-based lubricants in hot rolling of microalloyed steel. Journal of Manufacturing Processes, 2017, 27, 26-36.	2.8	63

#	Article	IF	CITATIONS
199	Electrochemical Surface Restructuring of Phosphorus-Doped Carbon@MoP Electrocatalysts for Hydrogen Evolution. Nano-Micro Letters, 2021, 13, 215.	14.4	63
200	Hydrothermal Synthesis of a Crystalline Rutile TiO ₂ Nanorod Based Network for Efficient Dye‧ensitized Solar Cells. Chemistry - A European Journal, 2013, 19, 13569-13574.	1.7	62
201	Photocatalytic hydrogen production in a noble-metal-free system catalyzed by in situ grown molybdenum sulfide catalyst. Journal of Catalysis, 2014, 310, 51-56.	3.1	62
202	Design of twin junction with solid solution interface for efficient photocatalytic H2 production. Nano Energy, 2020, 69, 104410.	8.2	62
203	Engineering Active Fe Sites on Nickel–Iron Layered Double Hydroxide through Component Segregation for Oxygen Evolution Reaction. ChemSusChem, 2020, 13, 811-818.	3.6	62
204	A selective ion replacement strategy for the synthesis of copper doped carbon nitride nanotubes with improved photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2018, 234, 19-25.	10.8	61
205	Homogeneous Doping of Substitutional Nitrogen/Carbon in TiO ₂ Plates for Visible Light Photocatalytic Water Oxidation. Advanced Functional Materials, 2019, 29, 1901943.	7.8	61
206	Vacancy defect engineering of BiVO ₄ photoanodes for photoelectrochemical water splitting. Nanoscale, 2021, 13, 17989-18009.	2.8	61
207	Numerical analysis of a propeller during heave motion in cavitating flow. Applied Ocean Research, 2017, 66, 131-145.	1.8	60
208	Pyrene-Functionalized PTMA by NRC for Greater π–π Stacking with rGO and Enhanced Electrochemical Properties. ACS Applied Materials & Interfaces, 2017, 9, 34900-34908.	4.0	60
209	Stable 1T-phase MoS ₂ as an effective electron mediator promoting photocatalytic hydrogen production. Nanoscale, 2018, 10, 9292-9303.	2.8	60
210	Nitrogen doping in ion-exchangeable layered tantalate towards visible-light induced water oxidation. Chemical Communications, 2011, 47, 6293.	2.2	59
211	Salt-embedded carbon nanodots as a UV and thermal stable fluorophore for light-emitting diodes. Journal of Luminescence, 2014, 154, 1-7.	1.5	59
212	Reinforcement of natural rubber latex using lignocellulosic nanofibers isolated from spinifex grass. Nanoscale, 2017, 9, 9510-9519.	2.8	59
213	A numerical study on the correlation between the evolution of propeller trailing vortex wake and skew of propellers. International Journal of Naval Architecture and Ocean Engineering, 2018, 10, 212-224.	1.0	59
214	Dipolar Molecules as Impellers Achieving Electric-Field-Stimulated Release. Journal of the American Chemical Society, 2010, 132, 1450-1451.	6.6	58
215	Enhanced performance of dye-sensitized solar cells by doping Au nanoparticles into photoanodes: a size effect study. Journal of Materials Chemistry A, 2013, 1, 13524.	5.2	58
216	Switched photocurrent direction in Au/TiO2 bilayer thin films. Scientific Reports, 2015, 5, 10852.	1.6	58

#	Article	IF	CITATIONS
217	Single-Atom Ru-Implanted Metal–Organic Framework/MnO ₂ for the Highly Selective Oxidation of NO _{<i>x</i>} by Plasma Activation. ACS Catalysis, 2020, 10, 10185-10196.	5.5	58
218	A New Mesoporous Manganese Oxide Pillared with Double Layers of Alumina. Advanced Materials, 2004, 16, 1412-1416.	11.1	57
219	Highly connected hierarchical textured TiO ₂ spheres as photoanodes for dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 8902-8909.	5.2	57
220	Selective production of hydrogen peroxide and oxidation of hydrogen sulfide in an unbiased solar photoelectrochemical cell. Energy and Environmental Science, 2014, 7, 3347-3351.	15.6	57
221	Synergetic Effect of Facet Junction and Specific Facet Activation of ZnFe ₂ O ₄ Nanoparticles on Photocatalytic Activity Improvement. ACS Applied Materials & Interfaces, 2019, 11, 29004-29013.	4.0	57
222	Fabricating highly efficient heterostructured CuBi ₂ O ₄ photocathodes for unbiased water splitting. Journal of Materials Chemistry A, 2020, 8, 2498-2504.	5.2	57
223	High-Performance Porous Silicon/Nanosilver Anodes from Industrial Low-Grade Silicon for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 49080-49089.	4.0	57
224	Efficient sequential harvesting of solar light by heterogeneous hollow shells with hierarchical pores. National Science Review, 2020, 7, 1638-1646.	4.6	57
225	Nonstoichiometric rutile TiO2 photoelectrodes for improved photoelectrochemical water splitting. Chemical Communications, 2013, 49, 6191.	2.2	56
226	Tribological Performance and Lubrication Mechanism of Alumina Nanoparticle Water-Based Suspensions in Ball-on-Three-Plate Testing. Tribology Letters, 2017, 65, 1.	1.2	56
227	Interfacial Linkage and Carbon Encapsulation Enable Full Solutionâ€Printed Perovskite Photovoltaics with Prolonged Lifespan. Angewandte Chemie - International Edition, 2021, 60, 23735-23742.	7.2	56
228	New electroless plating method for preparation of highly active Co–B catalysts for NaBH4 hydrolysis. International Journal of Hydrogen Energy, 2014, 39, 414-425.	3.8	55
229	Moltenâ€Saltâ€Mediated Synthesis of an Atomic Nickel Coâ€catalyst on TiO ₂ for Improved Photocatalytic H ₂ Evolution. Angewandte Chemie, 2020, 132, 7297-7301.	1.6	55
230	Sn4P3@Porous carbon nanofiber as a self-supported anode for sodium-ion batteries. Journal of Power Sources, 2020, 461, 228116.	4.0	55
231	Nanoparticles of Mesoporous SO ₃ Hâ€Functionalized Siâ€MCMâ€41 with Superior Proton Conductivity. Small, 2009, 5, 854-859.	5.2	54
232	Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy, 2015, 11, 557-567.	8.2	54
233	Design and synthesis of porous ZnTiO ₃ /TiO ₂ nanocages with heterojunctions for enhanced photocatalytic H ₂ production. Journal of Materials Chemistry A, 2017, 5, 11615-11622.	5.2	54
234	Analysis of the wake dynamics of a propeller operating before a rudder. Ocean Engineering, 2019, 188, 106250.	1.9	54

#	Article	IF	CITATIONS
235	Alkaline-earth bis(trifluoromethanesulfonimide) additives for efficient and stable perovskite solar cells. Nano Energy, 2020, 69, 104412.	8.2	54
236	Capacity-controllable Li-rich cathode materials for lithium-ion batteries. Nano Energy, 2014, 6, 92-102.	8.2	53
237	Inductive effect between atomically dispersed iridium and transition-metal hydroxide nanosheets enables highly efficient oxygen evolution reaction. Chemical Engineering Journal, 2020, 395, 125149.	6.6	53
238	Understanding the stepwise capacity increase of high energy low-Co Li-rich cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2014, 2, 18767-18774.	5.2	52
239	Improved CO2 photocatalytic reduction using a novel 3-component heterojunction. Nano Energy, 2019, 62, 426-433.	8.2	52
240	Boosting photoelectrochemical water splitting performance of Ta3N5 nanorod array photoanodes by forming a dual co-catalyst shell. Nano Energy, 2019, 59, 683-688.	8.2	52
241	Identification of embedded nanotwins at c-Si/a-Si:H interface limiting the performance of high-efficiency silicon heterojunction solar cells. Nature Energy, 2021, 6, 194-202.	19.8	52
242	Sc, Ge co-doping NASICON boosts solid-state sodium ion batteries' performance. Energy Storage Materials, 2021, 40, 282-291.	9.5	52
243	Numerical simulation of the wake instabilities of a propeller. Physics of Fluids, 2021, 33, .	1.6	52
244	Tantalum (Oxy)Nitride: Narrow Bandgap Photocatalysts for Solar Hydrogen Generation. Engineering, 2017, 3, 365-378.	3.2	51
245	Influence of interceptors, stern flaps, and their combinations on the hydrodynamic performance of a deep-vee ship. Ocean Engineering, 2018, 170, 306-320.	1.9	51
246	Propeller–duct interaction on the wake dynamics of a ducted propeller. Physics of Fluids, 2021, 33, .	1.6	51
247	Porous Titania Nanosheet/Nanoparticle Hybrids as Photoanodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 12058-12065.	4.0	50
248	Enhancing photocatalytic activity of tantalum nitride by rational suppression of bulk, interface and surface charge recombination. Applied Catalysis B: Environmental, 2019, 246, 195-201.	10.8	50
249	Facile preparation of smooth perovskite films for efficient meso/planar hybrid structured perovskite solar cells. Chemical Communications, 2015, 51, 10038-10041.	2.2	49
250	The pH-dependent structural and tribological behaviour of aqueous graphene oxide suspensions. Tribology International, 2017, 116, 460-469.	3.0	49
251	Flowing water enabled piezoelectric potential of flexible composite film for enhanced photocatalytic performance. Chemical Engineering Journal, 2018, 347, 263-272.	6.6	49
252	Progress in designing effective photoelectrodes for solar water splitting. Chinese Journal of Catalysis, 2018, 39, 369-378.	6.9	49

#	Article	IF	CITATIONS
253	Cu ₂ S@ N, S Dualâ€Doped Carbon Matrix Hybrid as Superior Anode Materials for Lithium/Sodium ion Batteries. ChemElectroChem, 2018, 5, 2135-2141.	1.7	49
254	A Portable and Efficient Solarâ€Rechargeable Battery with Ultrafast Photoâ€Charge/Discharge Rate. Advanced Energy Materials, 2019, 9, 1900872.	10.2	49
255	Mazeâ€Like Halide Perovskite Films for Efficient Electron Transport Layerâ€Free Perovskite Solar Cells. Solar Rrl, 2019, 3, 1800268.	3.1	49
256	PSi@SiOx/Nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries. Journal of Hazardous Materials, 2021, 414, 125480.	6.5	49
257	An ultrathin Al ₂ O ₃ bridging layer between CdS and ZnO boosts photocatalytic hydrogen production. Journal of Materials Chemistry A, 2020, 8, 11031-11042.	5.2	49
258	Noninvasively Modifying Band Structures of Wideâ€Bandgap Metal Oxides to Boost Photocatalytic Activity. Advanced Materials, 2018, 30, e1706259.	11.1	48
259	Boosting the performance of hybrid supercapacitors through redox electrolyte-mediated capacity balancing. Nano Energy, 2020, 68, 104226.	8.2	48
260	Identifying dual functions of rGO in a BiVO ₄ /rGO/NiFe-layered double hydroxide photoanode for efficient photoelectrochemical water splitting. Journal of Materials Chemistry A, 2020, 8, 13231-13240.	5.2	48
261	Recent progress of minimal voltage losses for high-performance perovskite photovoltaics. Nano Energy, 2021, 81, 105634.	8.2	48
262	Efficient photocatalytic destruction of recalcitrant micropollutants using graphitic carbon nitride under simulated sunlight irradiation. Environmental Science and Ecotechnology, 2021, 5, 100079.	6.7	48
263	Self-Organization of Ordered Silver Nanocrystal Arrays on Cubic Mesoporous Silica Surfaces. Chemistry of Materials, 1999, 11, 3015-3017.	3.2	47
264	Electrical power and hydrogen production from a photo-fuel cell using formic acid and other single-carbon organics. Journal of Materials Chemistry, 2012, 22, 10709.	6.7	47
265	Heteroatom-doped graphene for electrochemical energy storage. Science Bulletin, 2014, 59, 2102-2121.	1.7	47
266	Analysis of the performance of an oscillating propeller in cavitating flow. Ocean Engineering, 2018, 164, 23-39.	1.9	47
267	Separator coatings as efficient physical and chemical hosts of polysulfides for high-sulfur-loaded rechargeable lithium–sulfur batteries. Journal of Energy Chemistry, 2020, 44, 51-60.	7.1	47
268	Luminescent europium-doped titania for efficiency and UV-stability enhancement of planar perovskite solar cells. Nano Energy, 2020, 69, 104392.	8.2	47
269	Spontaneous surface/interface ligand-anchored functionalization for extremely high fill factor over 86% in perovskite solar cells. Nano Energy, 2020, 75, 104929.	8.2	47
270	Bismuth based photoelectrodes for solar water splitting. Journal of Energy Chemistry, 2021, 61, 517-530.	7.1	47

#	Article	IF	CITATIONS
271	Antiphotocorrosive photocatalysts containing CdS nanoparticles and exfoliated TiO ₂ nanosheets. Journal of Materials Research, 2010, 25, 182-188.	1.2	46
272	Lattice Distortion Oriented Angular Self-Assembly of Monolayer Titania Sheets. Journal of the American Chemical Society, 2011, 133, 695-697.	6.6	46
273	Efficient visible light-induced photoelectrocatalytic degradation of rhodamine B by polyaniline-sensitized TiO2 nanotube arrays. Journal of Nanoparticle Research, 2011, 13, 6813-6820.	0.8	46
274	Carbonâ€doped Titania Hollow Spheres with Tunable Hierarchical Macroporous Channels and Enhanced Visible Lightâ€induced Photocatalytic Activity. ChemCatChem, 2012, 4, 488-491.	1.8	46
275	A scalable colloidal approach to prepare hematite films for efficient solar water splitting. Physical Chemistry Chemical Physics, 2013, 15, 12314.	1.3	46
276	Multilayered films of cobalt oxyhydroxide nanowires/manganese oxide nanosheets for electrochemical capacitor. Journal of Power Sources, 2010, 195, 680-683.	4.0	45
277	Step-wise controlled growth of metal@TiO ₂ core–shells with plasmonic hot spots and their photocatalytic properties. Journal of Materials Chemistry A, 2014, 2, 12776.	5.2	45
278	Recent Advances of Metalâ€Oxide Photoanodes: Engineering of Charge Separation and Transportation toward Efficient Solar Water Splitting. Solar Rrl, 2020, 4, 1900509.	3.1	45
279	Interlayer Space Engineering of MXenes for Electrochemical Energy Storage Applications. Chemistry - A European Journal, 2021, 27, 1921-1940.	1.7	45
280	One-step supramolecular preorganization constructed crinkly graphitic carbon nitride nanosheets with enhanced photocatalytic activity. Journal of Materials Science and Technology, 2022, 104, 155-162.	5.6	45
281	Nanosphere Lithography: A Versatile Approach to Develop Transparent Conductive Films for Optoelectronic Applications. Advanced Materials, 2022, 34, e2103842.	11.1	45
282	Constructing a Metallic/Semiconducting TaB ₂ /Ta ₂ O ₅ Core/Shell Heterostructure for Photocatalytic Hydrogen Evolution. Advanced Energy Materials, 2014, 4, 1400057.	10.2	44
283	Photoelectrode for water splitting: Materials, fabrication and characterization. Science China Materials, 2018, 61, 806-821.	3.5	44
284	Minimizing Voltage Losses in Perovskite Solar Cells. Small Structures, 2021, 2, 2000050.	6.9	43
285	Perovskite crystals redissolution strategy for affordable, reproducible, efficient and stable perovskite photovoltaics. Materials Today, 2021, 50, 199-223.	8.3	43
286	Titania polymorphs derived from crystalline titanium diboride. CrystEngComm, 2009, 11, 2677.	1.3	42
287	Effective Cancer Cell Killing by Hydrophobic Nanovoidâ€Enhanced Cavitation under Safe Lowâ€Energy Ultrasound. Chemistry - an Asian Journal, 2014, 9, 790-796.	1.7	42
288	Greatly enhanced photocatalytic activity by organic flexible piezoelectric PVDF induced spatial electric field. Catalysis Science and Technology, 2017, 7, 5594-5601.	2.1	42

#	Article	IF	CITATIONS
289	Identifying Copper Vacancies and Their Role in the CuO Based Photocathode for Water Splitting. Angewandte Chemie, 2019, 131, 17768-17773.	1.6	42
290	Jâ€Aggregateâ€Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angewandte Chemie - International Edition, 2020, 59, 20065-20074.	7.2	42
291	A nonstoichiometric SnO2â^î´ nanocrystal-based counter electrode for remarkably improving the performance of dye-sensitized solar cells. Chemical Communications, 2014, 50, 7020.	2.2	41
292	Branched titania nanostructures for efficient energy conversion and storage: A review on design strategies, structural merits and multifunctionalities. Nano Energy, 2019, 62, 791-809.	8.2	41
293	Organicâ °inorganic hybrid perovskites: Game-changing candidates for solar fuel production. Nano Energy, 2020, 71, 104647.	8.2	41
294	Numerical analysis of the wake dynamics of a propeller. Physics of Fluids, 2021, 33, .	1.6	41
295	Mechanochemically Synthesised Flexible Electrodes Based on Bimetallic Metal–Organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2022, 61, .	7.2	41
296	Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries. Electrochimica Acta, 2017, 232, 550-560.	2.6	40
297	Post-redox engineering electron configurations of atomic thick C3N4 nanosheets for enhanced photocatalytic hydrogen evolution. Applied Catalysis B: Environmental, 2020, 270, 118855.	10.8	40
298	Dual Protection of Sulfur by Carbon Nanospheres and Graphene Sheets for Lithium–Sulfur Batteries. Chemistry - A European Journal, 2014, 20, 5224-5230.	1.7	39
299	Control of organic–inorganic halide perovskites in solid-state solar cells: a perspective. Science Bulletin, 2015, 60, 405-418.	4.3	39
300	Hollow Structure for Photocatalytic CO ₂ Reduction. ChemNanoMat, 2020, 6, 881-888.	1.5	39
301	Metal–Organic Frameworkâ€Based Materials for Solar Water Splitting. Small Science, 2021, 1, 2000074.	5.8	39
302	Structure Control of Nitrogen-Rich Graphene Nanosheets Using Hydrothermal Treatment and Formaldehyde Polymerization for Supercapacitors. ACS Applied Materials & Interfaces, 2016, 8, 18051-18059.	4.0	38
303	Phenethylammonium bismuth halides: from single crystals to bulky-organic cation promoted thin-film deposition for potential optoelectronic applications. Journal of Materials Chemistry A, 2019, 7, 20733-20741.	5.2	38
304	Synthesis of Mesoporous TiO2Spheres under Static Condition. Chemistry Letters, 2000, 29, 1414-1415.	0.7	37
305	Bifunctional photoelectrochemical process for humic acid degradation and hydrogen production using multi-layered p-type Cu2O photoelectrodes with plasmonic Au@TiO2. Journal of Hazardous Materials, 2021, 402, 123533.	6.5	37
306	Construction of point-line-plane (0-1-2 dimensional) Fe2O3-SnO2/graphene hybrids as the anodes with excellent lithium storage capability. Nano Research, 2017, 10, 121-133.	5.8	36

#	Article	IF	CITATIONS
307	Stackingâ€Layerâ€Number Dependence of Water Adsorption in 3D Ordered Closeâ€Packed gâ€C ₃ N ₄ Nanosphere Arrays for Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2019, 131, 4635-4639.	1.6	36
308	Suppressing Interfacial Charge Recombination in Electronâ€Transport‣ayerâ€Free Perovskite Solar Cells to Give an Efficiency Exceeding 21 %. Angewandte Chemie, 2020, 132, 21166-21173.	1.6	36
309	Synthesis of nanostructured mesoporous silica materials containing manganese. Scripta Materialia, 1998, 10, 1289-1299.	0.5	35
310	Preparation of high thermal stability MCM-41 in the low surfactant/silicon molar ratio synthesis systems. Materials Letters, 2001, 48, 112-116.	1.3	35
311	Electrochemical behavior of carbon-nanotube/cobalt oxyhydroxide nanoflake multilayer films. Journal of Power Sources, 2009, 193, 930-934.	4.0	35
312	Solar Rechargeable Batteries Based on Lead–Organohalide Electrolyte. Advanced Energy Materials, 2015, 5, 1501418.	10.2	35
313	Red-mud based porous nanocatalysts for valorisation of municipal solid waste. Journal of Hazardous Materials, 2020, 396, 122711.	6.5	35
314	The role of tungsten-related elements for improving the electrochemical performances of cathode materials in lithium ion batteries. Tungsten, 2021, 3, 245-259.	2.0	35
315	Small amines bring big benefits to perovskite-based solar cells and light-emitting diodes. CheM, 2022, 8, 351-383.	5.8	35
316	The effects of aspect ratio of inorganic fillers on the structure and property of composite ion-exchange membranes. Journal of Colloid and Interface Science, 2011, 363, 431-439.	5.0	34
317	Green Synthesis of Porous Three-Dimensional Nitrogen-Doped Graphene Foam for Electrochemical Applications. ACS Applied Materials & Interfaces, 2016, 8, 2505-2510.	4.0	34
318	Characterisation of lithium-ion battery anodes fabricated via in-situ Cu6Sn5 growth on a copper current collector. Journal of Power Sources, 2019, 415, 50-61.	4.0	34
319	The Rise of Textured Perovskite Morphology: Revolutionizing the Pathway toward Highâ€Performance Optoelectronic Devices. Advanced Energy Materials, 2020, 10, 1902256.	10.2	34
320	1Dâ€⊋D Synergistic MXeneâ€Nanotubes Hybrids for Efficient Perovskite Solar Cells. Small, 2021, 17, e2101925.	5.2	34
321	Copper single-atom catalyst as a high-performance electrocatalyst for nitrate-ammonium conversion. Journal of Hazardous Materials, 2022, 434, 128892.	6.5	34
322	Synthesis and in vitro bioactivity of ordered mesostructured bioactive glasses with adjustable pore sizes. Microporous and Mesoporous Materials, 2010, 132, 282-289.	2.2	33
323	Facile one-pot synthesis of Eu, N-codoped mesoporous titania microspheres with yolk-shell structure and high visible-light induced photocatalytic performance. Applied Catalysis A: General, 2012, 435-436, 86-92.	2.2	33
324	Layered (1â~²xâ~²y)LiNi[sub 1/2]Mn[sub 1/2]O[sub 2]â‹xLi[Li[sub 1/3]Mn[sub 2/3]] O[sub 2]â‹yLiCoO[sub 2] (0â‰æ=yâ‰ 9 .3 and x+y=0.5) Cathode Materials. Journal of the Electrochemical Society, 2005, 152, A171.	1.3	32

#	Article	IF	CITATIONS
325	Achieving maximum photo-oxidation reactivity of Cs0.68Ti1.83O4â^'xNx photocatalysts through valence band fine-tuning. Catalysis Science and Technology, 2011, 1, 222.	2.1	32
326	An nâ€Type to pâ€Type Switchable Photoelectrode Assembled from Alternating Exfoliated Titania Nanosheets and Polyaniline Layers. Angewandte Chemie - International Edition, 2013, 52, 6400-6403.	7.2	32
327	Tribological Characteristics of Aqueous Graphene Oxide, Graphitic Carbon Nitride, and Their Mixed Suspensions. Tribology Letters, 2018, 66, 1.	1.2	32
328	Effect of water-based nanolubricant containing nano-TiO2 on friction and wear behaviour of chrome steel at ambient and elevated temperatures. Wear, 2019, 426-427, 792-804.	1.5	32
329	Unlocking the potential of commercial carbon nanofibers as free-standing positive electrodes for flexible aluminum ion batteries. Journal of Materials Chemistry A, 2019, 7, 15123-15130.	5.2	32
330	Gradient Sn-Doped Heteroepitaxial Film of Faceted Rutile TiO ₂ as an Electron Selective Layer for Efficient Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 19638-19646.	4.0	32
331	Chlorine capped SnO2 quantum-dots modified TiO2 electron selective layer to enhance the performance of planar perovskite solar cells. Science Bulletin, 2019, 64, 547-552.	4.3	32
332	Advances in materials for allâ€climate sodiumâ€ion batteries. EcoMat, 2020, 2, e12043.	6.8	32
333	Asymmetric structure engineering of polymeric carbon nitride for visible-light-driven reduction reactions. Nano Energy, 2021, 87, 106168.	8.2	32
334	Epitaxial growth of an atom-thin layer on a LiNi0.5Mn1.5O4 cathode for stable Li-ion battery cycling. Nature Communications, 2022, 13, 1565.	5.8	32
335	Vaterite Selection by Chitosan Gel: An Example of Polymorph Selection by Morphology of Biomacromolecules. Crystal Growth and Design, 2008, 8, 2887-2891.	1.4	31
336	Simultaneous Removal of Antibiotic Resistant Bacteria, Antibiotic Resistance Genes, and Micropollutants by FeS ₂ @GO-Based Heterogeneous Photo-Fenton Process. Environmental Science & Technology, 2022, 56, 15156-15166.	4.6	31
337	Synthesis of titanium-doped ordered porous zirconium oxide with high-surface-area. Microporous and Mesoporous Materials, 2000, 39, 171-176.	2.2	30
338	Synthesis and crystal structure of dehydrated, deaminated, and dealuminated zeolite Y (FAU): single-crystal structure of Na33H26(Al5O4) [Si126Al66O384]-FAU. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2010, 67, 261-269.	1.6	30
339	Ambient Aqueous Growth of Cu ₂ Te Nanostructures with Excellent Electrocatalytic Activity toward Sulfide Redox Shuttles. Advanced Science, 2016, 3, 1500350.	5.6	30
340	Polyethylenimine Expanded Graphite Oxide Enables High Sulfur Loading and Longâ€Term Stability of Lithium–Sulfur Batteries. Small, 2019, 15, e1804578.	5.2	30
341	Control of Spatially Homogeneous Distribution of Heteroatoms to Produce Red TiO ₂ Photocatalyst for Visibleâ€Light Photocatalytic Water Splitting. Chemistry - A European Journal, 2019, 25, 1787-1794.	1.7	30
342	Hollow structured cathode materials for rechargeable batteries. Science Bulletin, 2020, 65, 496-512.	4.3	30

#	Article	IF	CITATIONS
343	Modal analysis of the propeller wake under the heavy loading condition. Physics of Fluids, 2022, 34, .	1.6	30
344	Temperature control in the synthesis of cubic mesoporous silica materials. Materials Letters, 2000, 45, 273-278.	1.3	29
345	Dualâ€Functional Upconverterâ€Doped TiO ₂ Hollow Shells for Light Scattering and Nearâ€Infrared Sunlight Harvesting in Dyeâ€Sensitized Solar Cells. Advanced Energy Materials, 2013, 3, 704-707.	10.2	29
346	Longâ€Term Cycling Performance of Nitrogenâ€Doped Hollow Carbon Nanospheres as Anode Materials for Sodiumâ€Ion Batteries. European Journal of Inorganic Chemistry, 2016, 2016, 2051-2055.	1.0	29
347	Trilayer Nanomesh Films with Tunable Wettability as Highly Transparent, Flexible, and Recyclable Electrodes. Advanced Functional Materials, 2020, 30, 2002556.	7.8	29
348	Dimensionality-Controlled Surface Passivation for Enhancing Performance and Stability of Perovskite Solar Cells via Triethylenetetramine Vapor. ACS Applied Materials & Interfaces, 2020, 12, 6651-6661.	4.0	29
349	All-Climate Aluminum-Ion Batteries Based on Binder-Free MOF-Derived FeS2@C/CNT Cathode. Nano-Micro Letters, 2021, 13, 159.	14.4	29
350	Cesium-doped Ti3C2Tx MXene for efficient and thermally stable perovskite solar cells. Cell Reports Physical Science, 2021, 2, 100598.	2.8	29
351	Bandgap narrowing of titanium oxide nanosheets: homogeneous doping of molecular iodine for improved photoreactivity. Journal of Materials Chemistry, 2011, 21, 14672.	6.7	28
352	Recent advances on Fe- and Mn-based cathode materials for lithium and sodium ion batteries. Journal of Nanoparticle Research, 2018, 20, 1.	0.8	28
353	Thermal catalysis under dark ambient conditions in environmental remediation: Fundamental principles, development, and challenges. Chinese Journal of Catalysis, 2019, 40, 1117-1134.	6.9	28
354	Sulfur-based redox chemistry for electrochemical energy storage. Coordination Chemistry Reviews, 2020, 422, 213445.	9.5	28
355	Composite proton-conducting polymer membranes for clean hydrogen production with solar light in a simple photoelectrochemical compartment cell. International Journal of Hydrogen Energy, 2012, 37, 4012-4017.	3.8	27
356	Photocatalytic degradation of gaseous toluene over bcc-In2O3 hollow microspheres. Applied Surface Science, 2015, 337, 27-32.	3.1	27
357	Etching treatment of vertical WO ₃ nanoplates as a photoanode for enhanced photoelectrochemical performance. RSC Advances, 2016, 6, 68204-68210.	1.7	27
358	Multifunctional Plasmonic Co-Doped Fe ₂ O ₃ @polydopamine-Au for Adsorption, Photocatalysis, and SERS-based Sensing. Particle and Particle Systems Characterization, 2016, 33, 602-609.	1.2	27
359	Recent progress of tungsten- and molybdenum-based semiconductor materials for solar-hydrogen production. Tungsten, 2019, 1, 19-45.	2.0	27
360	Highly-conductive PEDOT:PSS hydrogel framework based hybrid fiber with high volumetric capacitance and excellent rate capability. Electrochimica Acta, 2020, 334, 135530.	2.6	27

#	Article	IF	CITATIONS
361	Single-crystal Structure of Fully Dehydrated and Largely NH4+-exchanged Zeolite Y (FAU, Si/Al = 1.70), â",(NH4)60Na11â",[Si121Al71O384]-FAU. Bulletin of the Korean Chemical Society, 2009, 30, 543-550.	1.0	27
362	Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redoxâ€Active Sites for Highâ€Performance Aluminium Organic Batteries. Angewandte Chemie - International Edition, 2022, 61, .	7.2	27
363	Recent advances in lowâ€ŧoxic leadâ€free metal halide perovskite materials for solar cell application. Asia-Pacific Journal of Chemical Engineering, 2016, 11, 392-398.	0.8	26
364	Performance Evaluation and Lubrication Mechanism of Water-Based Nanolubricants Containing Nano-TiO2 in Hot Steel Rolling. Lubricants, 2018, 6, 57.	1.2	26
365	Inorganic pâ€Type Semiconductors as Hole Conductor Building Blocks for Robust Perovskite Solar Cells. Advanced Sustainable Systems, 2018, 2, 1800032.	2.7	26
366	Metal–Organic Framework/Polythiophene Derivative: Neuronlike S-Doped Carbon 3D Structure with Outstanding Sodium Storage Performance. ACS Applied Materials & Interfaces, 2019, 11, 37850-37858.	4.0	26
367	Molten Salt Synthesis of Atomic Heterogeneous Catalysts: Old Chemistry for Advanced Materials. European Journal of Inorganic Chemistry, 2020, 2020, 2942-2949.	1.0	26
368	Machine Learning Guided Dopant Selection for Metal Oxideâ€Based Photoelectrochemical Water Splitting: The Case Study of Fe ₂ 0 ₃ and CuO. Advanced Materials, 2022, 34, e2106776.	11.1	26
369	Fluorine and Carbon Codoped Macroporous Titania Microspheres: Highly Effective Photocatalyst for the Destruction of Airborne Styrene under Visible Light. Journal of Physical Chemistry C, 2008, 112, 19655-19661.	1.5	25
370	Ordered mesoporous tungsten oxide and titanium oxide composites and their photocatalytic degradation behavior. Progress in Natural Science: Materials International, 2012, 22, 654-660.	1.8	25
371	Ni-induced stepwise capacity increase in Ni-poor Li-rich cathode materials for high performance lithium ion batteries. Nano Research, 2015, 8, 808-820.	5.8	25
372	Highly compact and uniform CH3NH3Sn0.5Pb0.5I3 films for efficient panchromatic planar perovskite solar cells. Science Bulletin, 2016, 61, 1558-1562.	4.3	25
373	Carbon Quantum Dots sensitized Vertical WO ₃ Nanoplates with Enhanced Photoelectrochemical Properties. ChemistrySelect, 2016, 1, 2772-2777.	0.7	25
374	SiO ₂ –carbon nanocomposite anodes with a 3D interconnected network and porous structure from bamboo leaves. RSC Advances, 2016, 6, 1930-1937.	1.7	25
375	Rational Design of LaNiO ₃ /Carbon Composites as Outstanding Platinumâ€Free Photocathodes in Dyeâ€Sensitized Solar Cells With Enhanced Catalysis for the Triiodide Reduction Reaction. Solar Rrl, 2017, 1, 1700074.	3.1	25
376	Noble-metal-free MoS2/Ta3N5 heterostructure photocatalyst for hydrogen generation. Progress in Natural Science: Materials International, 2018, 28, 189-193.	1.8	25
377	Nanoconfined Topochemical Conversion from MXene to Ultrathin Nonâ€Layered TiN Nanomesh toward Superior Electrocatalysts for Lithiumâ€Sulfur Batteries. Small, 2021, 17, e2101360.	5.2	25
378	Development and potential of new generation photocatalytic systems for air pollution abatement: an overview. Asia-Pacific Journal of Chemical Engineering, 2009, 4, 387-402.	0.8	24

#	Article	IF	CITATIONS
379	Highly Thermostable Anatase Titania-Pillared Clay for the Photocatalytic Degradation of Airborne Styrene. Environmental Science & Technology, 2009, 43, 538-543.	4.6	24
380	Oxygen vacancy induced structural variations of exfoliated monolayerMnO2sheets. Physical Review B, 2010, 81, .	1.1	24
381	Nanotubules-supported Ru nanoparticles for preferential CO oxidation in H2-rich stream. Advanced Powder Technology, 2012, 23, 465-471.	2.0	24
382	Amino acid assisted synthesis of mesoporous TiO2 nanocrystals for high performance dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22, 10438.	6.7	24
383	Wavelength-switchable photocurrent in a hybrid TiO ₂ –Ag nanocluster photoelectrode. Chemical Communications, 2015, 51, 12072-12075.	2.2	24
384	Li 3 V 2 (PO 4) 3 /LiFePO 4 composite hollow microspheres for wide voltage lithium ion batteries. Electrochimica Acta, 2016, 219, 682-692.	2.6	24
385	A nanohybrid of CdTe@CdS nanocrystals and titania nanosheets with p–n nanojunctions for improved visible light-driven hydrogen production. Catalysis Today, 2016, 264, 229-235.	2.2	24
386	Dual modification of TiO 2 nanorods for selective photoelectrochemical detection of organic compounds. Sensors and Actuators B: Chemical, 2017, 250, 307-314.	4.0	24
387	Biomimetic Silica Nanocapsules for Tunable Sustained Release and Cargo Protection. Langmuir, 2017, 33, 5777-5785.	1.6	24
388	Processable graphene oxide-embedded titanate nanofiber membranes with improved filtration performance. Journal of Hazardous Materials, 2017, 325, 214-222.	6.5	24
389	A new sodium iron phosphate as a stable high-rate cathode material for sodium ion batteries. Nano Research, 2018, 11, 6197-6205.	5.8	24
390	Molecular-level anchoring of polymer cathodes on carbon nanotubes towards rapid-rate and long-cycle sodium-ion storage. Materials Chemistry Frontiers, 2018, 2, 1805-1810.	3.2	24
391	Modified phase average algorithm for the wake of a propeller. Physics of Fluids, 2021, 33, .	1.6	24
392	Nickel dual-atom catalysts for the selective electrocatalytic debromination of tribromoacetic acid as a green chemistry process. Chemical Engineering Journal, 2022, 427, 131719.	6.6	24
393	A novel charge-driven self-assembly method to prepare visible-light sensitive TiO2/activated carbon composites for dissolved organic compound removal. Chemical Engineering Journal, 2011, 168, 485-492.	6.6	23
394	Nanostructural instability of single-walled carbon nanotubes during electron beam induced shrinkage. Carbon, 2011, 49, 3120-3124.	5.4	23
395	Intriguing surface-extruded plastic flow of SiO _x amorphous nanowire as athermally induced by electron beam irradiation. Nanoscale, 2014, 6, 1499-1507.	2.8	23
396	One-Dimensional TiO2 Nanostructured Photoanodes: From Dye-Sensitised Solar Cells to Perovskite Solar Cells. Energies, 2016, 9, 1030.	1.6	23

#	Article	IF	CITATIONS
397	Ambient Synthesis of Oneâ€/Twoâ€Dimensional CuAgSe Ternary Nanotubes as Counter Electrodes of Quantumâ€Dotâ€&ensitized Solar Cells. ChemPlusChem, 2016, 81, 414-420.	1.3	23
398	An integrated thermoelectric-assisted photoelectrochemical system to boost water splitting. Science Bulletin, 2020, 65, 1163-1169.	4.3	23
399	Scalable fabrication and active site identification of MOF shell-derived nitrogen-doped carbon hollow frameworks for oxygen reduction. Journal of Materials Science and Technology, 2021, 66, 186-192.	5.6	23
400	Enhanced Safety and Performance of High-Voltage Solid-State Sodium Battery through Trilayer, Multifunctional Electrolyte Design. Energy Storage Materials, 2021, 41, 8-13.	9.5	23
401	A Ti-OH bond breaking route for creating oxygen vacancy in titania towards efficient CO2 photoreduction. Chemical Engineering Journal, 2021, 425, 131513.	6.6	23
402	Flexible solar-rechargeable energy system. Energy Storage Materials, 2020, 32, 356-376.	9.5	23
403	Visible Light Responsive Metal Oxide Photoanodes for Photoelectrochemical Water Splitting: a Comprehensive Review on Rational Materials Design. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2018, 33, 173.	0.6	23
404	Studies on mechanism of carbon nanotube and manganese oxide nanosheet self-sustained thin film for electrochemical capacitor. Solid State Ionics, 2010, 181, 1690-1696.	1.3	22
405	Li ₂ MnO ₃ based Li-rich cathode materials: towards a better tomorrow of high energy lithium ion batteries. Materials Technology, 2014, 29, A59-A69.	1.5	22
406	Advancement in liquid exfoliation of graphite through simultaneously oxidizing and ultrasonicating. Journal of Materials Chemistry A, 2014, 2, 20382-20392.	5.2	22
407	Maximizing the visible light photoelectrochemical activity of B/N-doped anatase TiO2 microspheres with exposed dominant {001} facets. Science China Materials, 2018, 61, 831-838.	3.5	22
408	Mesoporous ZnFe 2 O 4 Photoanodes with Templateâ€Tailored Mesopores and Temperatureâ€Dependent Photocurrents. ChemPhysChem, 2018, 19, 2313-2320.	1.0	22
409	Synchronous surface and bulk composition management for red-shifted light absorption and suppressed interfacial recombination in perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 9743-9752.	5.2	22
410	Photocatalytic and Photoelectrochemical Carbon Dioxide Reductions toward Value-Added Multicarbon Products. ACS ES&T Engineering, 2022, 2, 975-988.	3.7	22
411	Numerical research on the instabilities of CLT propeller wake. Ocean Engineering, 2022, 243, 110305.	1.9	22
412	Modal analysis of propeller wakes under different loading conditions. Physics of Fluids, 2022, 34, .	1.6	22
413	Controlled synthesis of highly active Au/CeO ₂ nanotubes for CO oxidation. Materials Chemistry Frontiers, 2017, 1, 1629-1634.	3.2	21
414	CoO@Nâ€Doped Carbon Composite Nanotubes as Excellent Anodes for Lithiumâ€lon Batteries. ChemElectroChem, 2017, 4, 2862-2869.	1.7	21

#	Article	IF	CITATIONS
415	The post-preparation of mesoporous Zr-MCM-41 via grafting reaction. Materials Letters, 2000, 46, 35-38.	1.3	20
416	Twoâ€Dimensional Materialâ€Functionalized Separators for Highâ€Energyâ€Density Metal–Sulfur and Metalâ€Based Batteries. ChemSusChem, 2020, 13, 1366-1378.	3.6	20
417	<i>In Situ</i> Formation of Interfacial Defects between Co-Based Spinel/Carbon Nitride Hybrids for Efficient CO ₂ Photoreduction. ACS Applied Energy Materials, 2020, 3, 5083-5094.	2.5	20
418	Nearâ€Infrared Photoactive Semiconductor Quantum Dots for Solar Cells. Advanced Energy Materials, 2021, 11, 2101923.	10.2	20
419	Synthesis and characterization of CuO containing mesoporous silica spheres. Journal of Materials Science, 2002, 37, 801-806.	1.7	19
420	Structural modifications caused by electrochemical lithium extraction for two types of layered LiVO2 (R3Â ⁻ m). Journal of Power Sources, 2007, 174, 469-472.	4.0	19
421	Controllable synthesis of concave cubic gold core–shell nanoparticles for plasmon-enhanced photon harvesting. Journal of Colloid and Interface Science, 2015, 449, 246-251.	5.0	19
422	Metallic Nanomesh with Disordered Dual-Size Apertures As Wide-Viewing-Angle Transparent Conductive Electrode. ACS Applied Materials & Interfaces, 2016, 8, 22768-22773.	4.0	19
423	Hierarchical macro/mesoporous NiO as stable and fast-charging anode materials for lithium-ion batteries. Microporous and Mesoporous Materials, 2017, 238, 78-83.	2.2	19
424	Homogeneous dual-site P lattice doping in CdS quantum rods for visible-light photocatalytic water splitting. Chemical Engineering Science, 2021, 238, 116594.	1.9	19
425	Recent advances of hollow-structured sulfur cathodes for lithium–sulfur batteries. Materials Chemistry Frontiers, 2020, 4, 2517-2547.	3.2	19
426	Long wavelength emissions of periodic yard-glass shaped boron nitride nanotubes. Applied Physics Letters, 2009, 94, 023105.	1.5	18
427	Visible-light assisted methylene blue (MB) removal by novel TiO2/adsorbent nanocomposites. Water Science and Technology, 2010, 61, 2863-2871.	1.2	18
428	Synthesizing new types of ultrathin 2D metal oxide nanosheets via half-successive ion layer adsorption and reaction. 2D Materials, 2017, 4, 025031.	2.0	18
429	Configuration-centered photovoltaic applications of metal halide perovskites. Journal of Materials Chemistry A, 2017, 5, 902-909.	5.2	18
430	Switched Photocurrent on Tin Sulfideâ€Based Nanoplate Photoelectrodes. ChemSusChem, 2017, 10, 670-674.	3.6	18
431	Numerical analysis of flow past an elliptic cylinder near a moving wall. Ocean Engineering, 2018, 169, 253-269.	1.9	18
432	3D Branched Nanowireâ€Coated Macroporous Titania Thin Films for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1804356.	7.8	18

#	Article	IF	CITATIONS
433	An improved method to synthesize nanoscale graphene oxide using much less acid. Materials Today Physics, 2019, 9, 100097.	2.9	18
434	Constructing a coplanar heterojunction through enhanced π-π conjugation in g-C3N4 for efficient solar-driven water splitting. Chinese Chemical Letters, 2022, 33, 2579-2584.	4.8	18
435	Metal-free π-conjugated hybrid g-C3N4 with tunable band structure for enhanced visible-light photocatalytic H2 production. Journal of Materials Science and Technology, 2021, 87, 207-215.	5.6	18
436	Revisiting solar hydrogen production through photovoltaic-electrocatalytic and photoelectrochemical water splitting. Frontiers in Energy, 2021, 15, 596-599.	1.2	18
437	Boosting the photocatalytic hydrogen production performance of graphitic carbon nitride nanosheets by tailoring the cyano groups. Journal of Colloid and Interface Science, 2022, 610, 495-503.	5.0	18
438	Synthesis and electrochemistry of layered 0.6LiNi0.5Mn0.5O2·xLi2MnO3·yLiCoO2 (x+y=0.4) cathode materials. Materials Letters, 2004, 58, 3197-3200.	1.3	17
439	Energetic requirements of iridium(<scp>iii</scp>) complex based photosensitisers in photocatalytic hydrogen generation. Physical Chemistry Chemical Physics, 2014, 16, 21577-21585.	1.3	17
440	Water diffusion in zeolite membranes: Molecular dynamics studies on effects of water loading and thermostat. Journal of Membrane Science, 2015, 495, 322-333.	4.1	17
441	Water Structure and Transport in Zeolites with Pores in One or Three Dimensions from Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 381-391.	1.5	17
442	A 3D hybrid nanowire/microcuboid optoelectronic electrode for maximised light harvesting in perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 932-939.	5.2	17
443	Significant THz-wave absorption property in mixed <i>δ</i> - and <i>α</i> -FAPbI ₃ hybrid perovskite flexible thin film formed by sequential vacuum evaporation. Applied Physics Express, 2019, 12, 051003.	1.1	17
444	Halide Perovskite Single Crystals: Optoelectronic Applications and Strategical Approaches. Energies, 2020, 13, 4250.	1.6	17
445	Stable Interfaces in a Sodium Metal-Free, Solid-State Sodium-Ion Battery with Gradient Composite Electrolyte. ACS Applied Materials & amp; Interfaces, 2021, 13, 39355-39362.	4.0	17
446	Custom Molecular Design of Ligands for Perovskite Photovoltaics. Accounts of Materials Research, 2021, 2, 1141-1155.	5.9	17
447	Photoelectrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors. Chinese Journal of Catalysis, 2022, 43, 1204-1215.	6.9	17
448	Ir single atoms modified Ni(OH)2 nanosheets on hierarchical porous nickel foam for efficient oxygen evolution. Nano Research, 2022, 15, 10014-10020.	5.8	17
449	Solar Cells: Nanosized Anatase TiO ₂ Single Crystals with Tunable Exposed (001) Facets for Enhanced Energy Conversion Efficiency of Dyeâ€6ensitized Solar Cells (Adv. Funct. Mater. 21/2011). Advanced Functional Materials, 2011, 21, 4166-4166.	7.8	16
450	Complete surface coverage of ZnO nanorod arrays by pulsed electrodeposited CuInS ₂ for visible light energy conversion. Dalton Transactions, 2015, 44, 7127-7130.	1.6	16

#	Article	IF	CITATIONS
451	Nanohybrid materials of titania nanosheets and plasmonic gold nanoparticles for effective hydrogen evolution. Applied Catalysis A: General, 2016, 521, 96-103.	2.2	16
452	Synthesis of Ag/AgCl-modified TiO2/MgAl-layered double hydroxide nanocomposite with enhanced photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 383, 111973.	2.0	16
453	ZIF-8 derived hollow carbon to trap polysulfides for high performance lithium–sulfur batteries. Nanoscale, 2021, 13, 11086-11092.	2.8	16
454	Ligand engineering of perovskite quantum dots for efficient and stable solar cells. Journal of Energy Chemistry, 2022, 69, 626-648.	7.1	16
455	Coordination Chemistry Engineered Polymeric Carbon Nitride Photoanode with Ultralow Onset Potential for Water Splitting. Angewandte Chemie - International Edition, 2022, 61, .	7.2	16
456	Electrochemical Characteristics of Layered Li _{1.95} Mn _{0.9} Co _{0.15} O ₃ (<i>C</i> 2/ <i>m</i>) as a Lithium-Battery Cathode. Journal of the Electrochemical Society, 2012, 159, A300-A304.	1.3	15
457	The effect of photoanode thickness on the performance of dye-sensitized solar cells containing TiO ₂ nanosheets with exposed reactive {001} facets. Journal of Materials Research, 2013, 28, 475-479.	1.2	15
458	In ₃ Se ₄ and S-doped In ₃ Se ₄ nano/micro-structures as new anode materials for Li-ion batteries. Journal of Materials Chemistry A, 2015, 3, 7560-7567.	5.2	15
459	Naâ€Doped C ₇₀ Fullerene/Nâ€Doped Graphene/Feâ€Based Quantum Dot Nanocomposites for Sodiumâ€lon Batteries with Ultrahigh Coulombic Efficiency. ChemElectroChem, 2018, 5, 129-136.	1.7	15
460	Energy loss analysis in photoelectrochemical water splitting: a case study of hematite photoanodes. Physical Chemistry Chemical Physics, 2018, 20, 22629-22635.	1.3	15
461	Chlorine-Doped Perovskite Oxide: A Platinum-Free Cathode for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 35641-35652.	4.0	15
462	Bifacial Contact Junction Engineering for Highâ€Performance Perovskite Solar Cells with Efficiency Exceeding 21%. Small, 2019, 15, 1900606.	5.2	15
463	A fast ionic conductor and stretchable solid electrolyte artificial interphase layer for Li metal protection in lithium batteries. Journal of Alloys and Compounds, 2020, 843, 155839.	2.8	15
464	An analysis of F-doping in Li-rich cathodes. Rare Metals, 2022, 41, 1771-1796.	3.6	15
465	An Integrated Strategy towards Enhanced Performance of the Lithium–Sulfur Battery and its Fading Mechanism. Chemistry - A European Journal, 2018, 24, 18544-18550.	1.7	14
466	Intermarriage of Halide Perovskites and Metalâ€Organic Framework Crystals. Angewandte Chemie, 2020, 132, 19602-19617.	1.6	14
467	Designing efficient Bi ₂ Fe ₄ O ₉ photoanodes <i>via</i> bulk and surface defect engineering. Chemical Communications, 2020, 56, 9376-9379.	2.2	14
468	Structural and morphological transformations of mesostructured titanium phosphate through hydrothermal treatment. Journal of Colloid and Interface Science, 2007, 316, 954-961.	5.0	13

#	Article	IF	CITATIONS
469	Renewable Energy Conversion and Storage. Advanced Energy Materials, 2017, 7, 1703091.	10.2	13
470	Two-dimensional heterojunction SnS2/SnO2 photoanode with excellent photoresponse up to near infrared region. Solar Energy Materials and Solar Cells, 2020, 207, 110342.	3.0	13
471	Stabilizing High-voltage Cathode Materials for Next-generation Li-ion Batteries. Chemical Research in Chinese Universities, 2020, 36, 24-32.	1.3	13
472	Preparation and Electrochemical Properties of the Layered Material of Li[sub x]V[sub y]O[sub 2] (x=0.86 and y=0.8). Journal of the Electrochemical Society, 2006, 153, A117.	1.3	12
473	One-Dimensional (1D) ZnO Nanowires Dye Sensitized Solar Cell. Journal of Nanoscience and Nanotechnology, 2013, 13, 333-338.	0.9	12
474	A stable high-power Na2Ti3O7/LiNi0.5Mn1.5O4 Li-ion hybrid energy storage device. Electrochimica Acta, 2018, 284, 30-37.	2.6	12
475	The effects of Ni on inhibiting the separation of Cu during the lithiation of Cu6Sn5 lithium-ion battery anodes. Journal of Power Sources, 2019, 440, 227085.	4.0	12
476	Revealing the failure mechanism of transition-metal chalcogenides towards the copper current collector in secondary batteries. Journal of Materials Chemistry A, 2020, 8, 6569-6575.	5.2	12
477	Surface Degradation Mechanism on CH3NH3PbBr3 Hybrid Perovskite Single Crystal by a Grazing E-Beam Irradiation. Nanomaterials, 2020, 10, 1253.	1.9	12
478	Bridging localized electron states of pyrite-type CoS2 cocatalyst for activated solar H2 evolution. Nano Research, 0, , 1.	5.8	12
479	Interconnected N-doped MXene spherical shells for highly efficient capacitive deionization. Environmental Science: Nano, 2022, 9, 204-213.	2.2	12
480	Rapid synthesis of mesoporous silica with micrometer sized hexagonal prism structure. Journal of Materials Chemistry, 1999, 9, 643-645.	6.7	11
481	VLS growth of SiOx nanowires with a stepwise nonuniformity in diameter. Journal of Applied Physics, 2011, 109, 084328.	1.1	11
482	Effect of sodium on photovoltaic properties of dye-sensitized solar cells assembled with anatase TiO2 nanosheets with exposed {001} facets. Journal of Colloid and Interface Science, 2013, 391, 70-73.	5.0	11
483	Facile synthesis and characterizations of copper–zinc-10,15,20-tetra(4-pyridyl) porphyrin (Cu–ZnTPyP) coordination polymer with hexagonal micro-lump and micro-prism morphologies. Journal of Colloid and Interface Science, 2014, 432, 229-235.	5.0	11
484	Bias-dependent effects in planar perovskite solar cells based on CH3NH3PbI3â^'Cl films. Journal of Colloid and Interface Science, 2015, 453, 9-14.	5.0	11
485	Hybridization of ZSMâ€5 with Spinel Oxides for Biomass Vapour Upgrading. ChemCatChem, 2020, 12, 1403-1412.	1.8	11
486	Rational strategies toward efficient and stable lead-free tin halide perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 4107-4127.	3.2	11

#	Article	IF	CITATIONS
487	Binder-free mechanochemical metal–organic framework nanocrystal coatings. Nanoscale, 2022, 14, 2221-2229.	2.8	11
488	Layer-By-Layer assembled thin films of inorganic nanomaterials: fabrication and photo-electrochemical properties. International Journal of Surface Science and Engineering, 2009, 3, 44.	0.4	10
489	In-situ synthesis of gold nanoparticles in nitrogen-doped titania nanosheets via layer-by-layer assembly method. Thin Solid Films, 2012, 520, 7066-7070.	0.8	10
490	Beam-Induced Nonuniform Shrinkage of Single-Walled Carbon Nanotube and Passivation Effect of Metal Nanoparticle. Journal of Physical Chemistry C, 2015, 119, 6239-6245.	1.5	10
491	WB crystals with oxidized surface as counter electrode in dye-sensitized solar cells. Science Bulletin, 2017, 62, 114-118.	4.3	10
492	Tuning Enhancement Efficiency of Multiple Emissive Centers in Graphene Quantum Dots by Core–Shell Plasmonic Nanoparticles. Journal of Physical Chemistry Letters, 2017, 8, 5673-5679.	2.1	10
493	Fluorination of pyrene-based organic semiconductors enhances the performance of light emitting diodes and halide perovskite solar cells. Organic Electronics, 2020, 77, 105524.	1.4	10
494	Jâ€Aggregateâ€Based FRET Monitoring of Drug Release from Polymer Nanoparticles with High Drug Loading. Angewandte Chemie, 2020, 132, 20240-20249.	1.6	10
495	Interconnected Graphene Hollow Shells for High-Performance Capacitive Deionization. ACS Applied Materials & Interfaces, 2020, 12, 29706-29716.	4.0	10
496	Unusual terahertz-wave absorptions in δlα-mixed-phase FAPbI3 single crystals: interfacial phonon vibration modes. NPG Asia Materials, 2021, 13, .	3.8	10
497	Infrared spectral studies of ammonium polyacrylate adsorbed on nano-zirconia powder surfaces. Scripta Materialia, 1999, 11, 861-866.	0.5	9
498	Room temperature synthesis of mesoporous aluminosilicate materials. Ceramics International, 2000, 26, 359-362.	2.3	9
499	Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes. Beilstein Journal of Nanotechnology, 2014, 5, 895-902.	1.5	9
500	Comparison of the effect of hydrogen incorporation and oxygen vacancies on the properties of anatase TiO2: electronics, optical absorption, and interaction with water. Science Bulletin, 2014, 59, 2175-2180.	1.7	9
501	Will new aluminum-ion battery be a game changer?. Science Bulletin, 2015, 60, 1042-1044.	4.3	9
502	Enhanced Performance of a Pillared TiO ₂ Nanohybrid as an Anode Material for Fast and Reversible Lithium Storage. ChemNanoMat, 2015, 1, 96-101.	1.5	9
503	Tuning the carbon content on TiO 2 nanosheets for optimized sodium storage. Electrochimica Acta, 2016, 219, 163-169.	2.6	9
504	High performance flexible metal oxide/silver nanowire based transparent conductive films by a scalable lamination-assisted solution method. Journal of Materiomics, 2017, 3, 77-82.	2.8	9

#	Article	IF	CITATIONS
505	Oxidation Behaviour of Steel During hot Rolling by Using TiO2-Containing Water-Based Nanolubricant. Oxidation of Metals, 2019, 92, 315-335.	1.0	9
506	Numerical and Experimental Study of Flow Field between the Main Hull and Demi-Hull of a Trimaran. Journal of Marine Science and Engineering, 2020, 8, 975.	1.2	9
507	Selfâ€Assembled Perovskite Nanoislands on CH ₃ NH ₃ PbI ₃ Cuboid Single Crystals by Energetic Surface Engineering. Advanced Functional Materials, 2021, 31, 2105542.	7.8	9
508	Simulation strategy of the full-scale ship resistance and propulsion performance. Engineering Applications of Computational Fluid Mechanics, 2021, 15, 1321-1342.	1.5	9
509	Understanding the roles of carbon in carbon/g-C3N4 based photocatalysts for H2 evolution. Nano Research, 0, , 1.	5.8	9
510	Improved visible light absorption of HTaWO6 induced by nitrogen doping: An experimental and theoretical study. Chemical Physics Letters, 2011, 501, 427-430.	1.2	8
511	Insight into the liquid state of organo-lead halide perovskites and their new roles in dye-sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 10355.	5.2	8
512	Nanomedicine: Break-up of Two-Dimensional MnO2Nanosheets Promotes Ultrasensitive pH-Triggered Theranostics of Cancer (Adv. Mater. 41/2014). Advanced Materials, 2014, 26, 7018-7018.	11.1	8
513	Perovskite Solar Cells: In Situ Growth of 2D Perovskite Capping Layer for Stable and Efficient Perovskite Solar Cells (Adv. Funct. Mater. 17/2018). Advanced Functional Materials, 2018, 28, 1870113.	7.8	8
514	Unveiling general rules governing the dimensional evolution of branched TiO ₂ and impacts on photoelectrochemical behaviors. Journal of Materials Chemistry A, 2021, 9, 23313-23322.	5.2	8
515	Fabrication and Electrochemical Characterization of Molecularly Alternating Self-Assembled Films and Capsules of Titania Nanosheets and Gold Nanoparticles. Current Nanoscience, 2007, 3, 155-160.	0.7	7
516	Low temperature synthesis of visible light responsive rutile TiO2 nanorods from TiC precursor. Frontiers of Chemical Science and Engineering, 2012, 6, 53-57.	2.3	7
517	Fabrication of multilayer films of N-doped titania nanosheets and hematite nanocubes via layer by layer assembly. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 395, 100-104.	2.3	7
518	Hybrid assembly of nanosol titania and dodecylamine for superhydrophobic self-cleaning glass. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	7
519	Influence of Ice Size Parameter Variation on Hydrodynamic Performance of Podded Propulsor. China Ocean Engineering, 2020, 34, 30-45.	0.6	7
520	Interfacial Linkage and Carbon Encapsulation Enable Full Solutionâ€Printed Perovskite Photovoltaics with Prolonged Lifespan. Angewandte Chemie, 2021, 133, 23928.	1.6	7
521	Mechanochemically Synthesised Flexible Electrodes based on Bimetallic Metalâ€organic Framework Glasses for the Oxygen Evolution Reaction. Angewandte Chemie, 0, ,	1.6	7
522	Title is missing!. Journal of Materials Science Letters, 2001, 20, 277-280.	0.5	6

#	Article	IF	CITATIONS
523	Controllable cathodic electrodeposition of cobalt films and their electrochemical behaviour. International Journal of Nanotechnology, 2007, 4, 588.	0.1	6
524	POLYMORPH SELECTION OF CALCIUM CARBONATE BY THE MORPHOLOGY OF BIOMACROMOLECULES: FROM ARAGONITE, VATERITE TO CALCITE. Modern Physics Letters B, 2009, 23, 3695-3706.	1.0	6
525	Visible-light photoresponsive heterojunctions of (Nb–Ti–Si) and (Bi/Bi-O) nanoparticles. Electrochemistry Communications, 2009, 11, 509-514.	2.3	6
526	Ti-Zr-O Nanotube Arrays with Controlled Morphology, Crystal Structure and Optical Properties. Journal of Nanoscience and Nanotechnology, 2009, 9, 6501-6510.	0.9	6
527	Abnormal Cathodic Photocurrent Generated on an nâ€īype FeOOH Nanorodâ€Array Photoelectrode. Chemistry - A European Journal, 2016, 22, 4802-4808.	1.7	6
528	Low-temperature templated synthesis of porous TiO2 single-crystals for solar cell applications. Solar Energy, 2016, 123, 17-22.	2.9	6
529	Microstructure construction and composition modification of CeO ₂ macrospheres with superior performance. Inorganic Chemistry Frontiers, 2016, 3, 92-96.	3.0	6
530	Nanostructured Semiconductors for Bifunctional Photocatalytic and Photoelectrochemical Energy Conversion. Semiconductors and Semimetals, 2017, 97, 315-347.	0.4	6
531	Numerical Study on the Unsteady Hydrodynamic Performance of a Four-Propeller Propulsion System Undergoing Oscillatory Motions. Journal of Coastal Research, 2017, 332, 347-358.	0.1	6
532	Synthesis of MCM-48 under low surfactant/silicon molar ratio conditions. Journal of Materials Science Letters, 2000, 19, 1461-1464.	0.5	5
533	Solar Cells: In Situ Growth of a ZnO Nanowire Network within a TiO2Nanoparticle Film for Enhanced Dye-Sensitized Solar Cell Performance (Adv. Mater. 43/2012). Advanced Materials, 2012, 24, 5849-5849.	11.1	5
534	Reddish GaN:ZnO photoelectrode for improved photoelectrochemical solar water splitting. Journal of Chemical Physics, 2020, 153, 024706.	1.2	5
535	ASnX ₃ —Better than Pbâ€based Perovskite. Nano Select, 2021, 2, 159-186.	1.9	5
536	Diffuse scattering from a Li–Mn oxide disorderly stacked through flocculation of exfoliated nanosheets. Philosophical Magazine, 2007, 87, 2767-2772.	0.7	4
537	Characterization of hybrid organic and inorganic functionalised membranes for proton conduction. Solid State Ionics, 2008, 179, 477-482.	1.3	4
538	Controllable fabrication of PS/Ag core-shell-shaped nanostructures. Nanoscale Research Letters, 2012, 7, 580.	3.1	4
539	Synthesis of octahedral TiO2 single crystals with {101} facets from solid precursor with N2H4 as capping agent. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	4
540	Photocatalysis: Singleâ€Crystalline Nanomesh Tantalum Nitride Photocatalyst with Improved Hydrogenâ€Evolving Performance (Adv. Energy Mater. 1/2018). Advanced Energy Materials, 2018, 8, 1770138.	10.2	4

#	Article	IF	CITATIONS
541	Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redoxâ€Active Sites for Highâ€Performance Aluminium Organic Batteries. Angewandte Chemie, 2022, 134, .	1.6	4
542	Grapheneâ€Based Nanomaterials for Solarâ€Driven Overall Water Splitting. Chemistry - A European Journal, 2022, 28, .	1.7	4
543	Processing effects in self-organized mesoporous silica materials. Journal of Materials Science Letters, 1999, 18, 1171-1173.	0.5	3
544	Rapid synthesis and morphological control of self-assembly mesoporous silica materials. Journal of Non-Crystalline Solids, 2000, 278, 178-186.	1.5	3
545	Facile Synthesis and Characterization of Potassium-Doped MnO2 Nanowires. Journal of Nanoscience and Nanotechnology, 2008, 8, 2011-2015.	0.9	3
546	Memory Devices: Resistive Switching Behavior in Organic-Inorganic Hybrid CH3NH3PbI3â^'xClxPerovskite for Resistive Random Access Memory Devices (Adv. Mater. 40/2015). Advanced Materials, 2015, 27, 6303-6303.	11.1	3
547	Water Splitting: In Situ Formation of Oxygen Vacancies Achieving Nearâ€Complete Charge Separation in Planar BiVO ₄ Photoanodes (Adv. Mater. 26/2020). Advanced Materials, 2020, 32, 2070198.	11.1	3
548	Bias effect on surface chemical states of CH3NH3PbBr3 hybrid perovskite single crystal: Decreasing CH3NH2 molecular defect. Applied Surface Science, 2021, 542, 148536.	3.1	3
549	Converting natural gas: quantum-sized bismuth vanadate holds the key for selective photocatalytic oxidation of methane. Science China Chemistry, 2021, 64, 686-687.	4.2	3
550	Nâ€Doped CsTaWO ₆ as a New Photocatalyst for Hydrogen Production from Water Splitting Under Solar Irradiation. Advanced Functional Materials, 2011, 21, 125-125.	7.8	2
551	Nonmetal Doping in TiO2 Toward Visible-Light-Induced Photocatalysis. Handbook of Environmental Chemistry, 2013, , 87-113.	0.2	2
552	An nâ€Type to pâ€Type Switchable Photoelectrode Assembled from Alternating Exfoliated Titania Nanosheets and Polyaniline Layers. Angewandte Chemie, 2013, 125, 6528-6531.	1.6	2
553	Heterostructure Films: A Freestanding 3D Heterostructure Film Stitched by MOFâ€Derived Carbon Nanotube Microsphere Superstructure and Reduced Graphene Oxide Sheets: A Superior Multifunctional Electrode for Overall Water Splitting and Zn–Air Batteries (Adv. Mater. 48/2020). Advanced Materials, 2020, 32, 2020362	11.1	2
554	Preface to the special issue on advanced preparation of tungsten-related materials and their applications. Tungsten, 2020, 2, 335-336.	2.0	2
555	Solar to fuel: Recent developments in conversion of sunlight into high value chemicals. APL Materials, 2020, 8, .	2.2	2
556	Coordination Chemistry Engineered Polymeric Carbon Nitride Photoanode with Ultralow Onset Potential for Water Splitting. Angewandte Chemie, 0, , .	1.6	2
557	Title is missing!. Journal of Materials Science Letters, 2001, 20, 289-291.	0.5	1
558	Redoxable Nanosheet Crystallites of MnO2 Derived via Delamination of a Layered Manganese Oxide ChemInform, 2003, 34, no.	0.1	1

#	Article	IF	CITATIONS
559	Preparation of new composite membranes for water desalination using electrodialysis. , 2008, , .		1
560	Imaging: Positive and Negative Lattice Shielding Effects Co-existing in Gd (III) Ion Doped Bifunctional Upconversion Nanoprobes (Adv. Funct. Mater. 22/2011). Advanced Functional Materials, 2011, 21, 4397-4397.	7.8	1
561	Photocatalysis: ZnO-CdS@Cd Heterostructure for Effective Photocatalytic Hydrogen Generation (Adv. Energy Mater. 1/2012). Advanced Energy Materials, 2012, 2, 2-2.	10.2	1
562	Dual-Functional Upconverter-Doped TiO2Hollow Shells for Light Scattering and Near-Infrared Sunlight Harvesting in Dye-Sensitized Solar Cells (Adv. Energy Mater. 6/2013). Advanced Energy Materials, 2013, 3, 703-703.	10.2	1
563	Cancer Therapy: Multifunctional Graphene Oxide-based Triple Stimuli-Responsive Nanotheranostics (Adv. Funct. Mater. 28/2014). Advanced Functional Materials, 2014, 24, 4385-4385.	7.8	1
564	Ternary solvent boosts two-dimensional perovskites. Science Bulletin, 2017, 62, 462-463.	4.3	1
565	Optoelectronic Devices: The Rise of Textured Perovskite Morphology: Revolutionizing the Pathway toward Highâ€Performance Optoelectronic Devices (Adv. Energy Mater. 7/2020). Advanced Energy Materials, 2020, 10, 2070029.	10.2	1
566	Semiconductor-Based Nanostructures for Photoelectrochemical Sensors and Biosensors. Lecture Notes in Nanoscale Science and Technology, 2013, , 87-118.	0.4	1
567	Research Progress in Novel In-situ Integrative Photovoltaic-Storage Tandem Cells. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2019, , 342.	0.6	1
568	Chapter 7. Bridging Homogeneous and Heterogeneous Systems—Photoelectrodes for CO2 Electrochemical Conversion. RSC Energy and Environment Series, 2020, , 287-316.	0.2	1
569	Selfâ€Assembled Perovskite Nanoislands on CH ₃ NH ₃ PbI ₃ Cuboid Single Crystals by Energetic Surface Engineering (Adv. Funct. Mater. 50/2021). Advanced Functional Materials, 2021, 31, .	7.8	1
570	Sintering of metal-organic frameworks. Cell Reports Physical Science, 2022, 3, 100932.	2.8	1
571	Fabrication of Multilayer Ultrathin Films through Layer-By-Layer Assembly of Delaminated MnO2 Nanosheets and Polyelectrolytes. , 2005, , 135-142.		0
572	Inorganic thin films self-assembled from lamellar TiO/sub 2/ and layered double hydroxide and their electrochemical behaviour. , 2006, , .		0
573	New layered semiconductors for efficient photoelectrochemical hydrogen and oxygen generation. , 2011, , .		Ο
574	Photocatalysis: Constructing a Metallic/Semiconducting TaB2/Ta2O5Core/Shell Heterostructure for Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 12/2014). Advanced Energy Materials, 2014, 4, n/a-n/a.	10.2	0
575	Perovskite solar modules hit new efficiency record. Science Bulletin, 2017, 62, 1293-1294.	4.3	0
576	Post-Treatments to Enhance Vertical Alignment of ZnO Nanorods on Glass Substrates by Hydrothermal Deposition. Materials Science Forum, 0, 901, 44-49.	0.3	0

#	Article	IF	CITATIONS
577	Addressing the Key Aspects of Photoelectrocatalytic Systems for Solar Fuel Production. ACS Energy Letters, 2017, 2, 2725-2726.	8.8	0
578	Frontispiece: Interlayer Space Engineering of MXenes for Electrochemical Energy Storage Applications. Chemistry - A European Journal, 2021, 27, .	1.7	0
579	Designing Semiconductor Metal Oxides for Photoelectrochemical Energy Conversion. , 2013, , .		0
580	CHAPTER 5. Functionalization of Chemically Derived Graphene for Photocatalysis. RSC Nanoscience and Nanotechnology, 2018, , 128-154.	0.2	0
581	Rücktitelbild: Heterocyclic Conjugated Polymer Nanoarchitectonics with Synergistic Redoxâ€Active Sites for Highâ€Performance Aluminium Organic Batteries (Angew. Chem. 25/2022). Angewandte Chemie, 2022, 134, .	1.6	0