Christine Gravier-Pelletier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5242122/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recent advances in nanotechnology for eradicating bacterial biofilm. Theranostics, 2022, 12, 2383-2405.	10.0	43
2	A Sub-Micromolar MraYAA Inhibitor with an Aminoribosyl Uridine Structure and a (S,S)-Tartaric Diamide: Synthesis, Biological Evaluation and Molecular Modeling. Molecules, 2022, 27, 1769.	3.8	1
3	Systemic bis-phosphinic acid derivative restores chloride transport in Cystic Fibrosis mice. Scientific Reports, 2022, 12, 6132.	3.3	2
4	Synthesis, biological evaluation and molecular modeling of urea-containing MraY inhibitors. Organic and Biomolecular Chemistry, 2021, 19, 5844-5866.	2.8	3
5	Modulators of CFTR. Updates on clinical development and future directions. European Journal of Medicinal Chemistry, 2021, 213, 113195.	5.5	39
6	New insights into structure and function of bis-phosphinic acid derivatives and implications for CFTR modulation. Scientific Reports, 2021, 11, 6842.	3.3	9
7	Regioselective Functionalization of Quinolines through C-H Activation: A Comprehensive Review. Molecules, 2021, 26, 5467.	3.8	15
8	Synthetic Route to Glycosyl β-1C-(phosphino)-phosphonates as Unprecedented Stable Glycosyl Diphosphate Analogs and Their Preliminary Biological Evaluation. Molecules, 2020, 25, 4969.	3.8	1
9	Discovery, SAR study and ADME properties of methyl 4-amino-3-cyano-1-(2-benzyloxyphenyl)-1 <i>H</i> -pyrazole-5-carboxylate as an HIV-1 replication inhibitor. RSC Medicinal Chemistry, 2020, 11, 577-582.	3.9	8
10	Bacterial Lipid II Analogs: Novel In Vitro Substrates for Mammalian Oligosaccharyl Diphosphodolichol Diphosphatase (DLODP) Activities. Molecules, 2019, 24, 2135.	3.8	1
11	Destabilization of the human RED–SMU1 splicing complex as a basis for host-directed antiinfluenza strategy. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 10968-10977.	7.1	7
12	Bacterial Transferase MraY, a Source of Inspiration towards New Antibiotics. Current Medicinal Chemistry, 2019, 25, 6013-6029.	2.4	11
13	Structure of the essential peptidoglycan amidotransferase MurT/GatD complex from Streptococcus pneumoniae. Nature Communications, 2018, 9, 3180.	12.8	34
14	Synthesis and biological evaluation of chemical tools for the study of Dolichol Linked Oligosaccharide Diphosphatase (DLODP). European Journal of Medicinal Chemistry, 2017, 125, 952-964.	5.5	11
15	Effect of uridine protecting groups on the diastereoselectivity of uridine-derived aldehyde 5'-alkynylation. Beilstein Journal of Organic Chemistry, 2017, 13, 1533-1541.	2.2	3
16	Brefeldin A promotes the appearance of oligosaccharyl phosphates derived from Glc3Man9GlcNAc2-PP-dolichol within the endomembrane system of HepG2 cells. Journal of Lipid Research, 2016, 57, 1477-1491.	4.2	5
17	Synthesis of Multifunctionalized 2-Iminothiazolidin-4-ones and Their 2-Arylimino Derivatives. Synthesis, 2016, 48, 4569-4579.	2.3	4
18	Demonstration of an oligosaccharide-diphosphodolichol diphosphatase activity whose subcellular localization is different than those of dolichyl-phosphate-dependent enzymes of the dolichol cycle. Journal of Lipid Research, 2016, 57, 1029-1042.	4.2	10

#	Article	IF	CITATIONS
19	Nucleophilic Opening of an Epoxide by a Masked Glycine Anion Equivalent: A Route to C-Glycosyl Amino Acids. Synlett, 2016, 27, 1551-1556.	1.8	3
20	5′-Methylene-triazole-substituted-aminoribosyl uridines as MraY inhibitors: synthesis, biological evaluation and molecular modeling. Organic and Biomolecular Chemistry, 2015, 13, 7193-7222.	2.8	33
21	Microwave-assisted preparation of 4-amino-3-cyano-5-methoxycarbonyl-N-arylpyrazoles as building blocks for the diversity-oriented synthesis of pyrazole-based polycyclic scaffolds. Organic and Biomolecular Chemistry, 2015, 13, 409-423.	2.8	24
22	A Diastereoselective Synthesis of 5′-Substituted-Uridine Derivatives. Journal of Organic Chemistry, 2014, 79, 7758-7765.	3.2	15
23	Toward Analogues of MraY Natural Inhibitors: Synthesis of 5′-Triazole-Substituted-Aminoribosyl Uridines Through a Cu-Catalyzed Azide–Alkyne Cycloaddition. Journal of Organic Chemistry, 2013, 78, 10088-10105.	3.2	21
24	Synthesis and biological evaluation of potential new inhibitors of the bacterial transferase MraY with a β-ketophosphonate structure. Organic and Biomolecular Chemistry, 2011, 9, 8301.	2.8	11
25	Synthesis and biological evaluation of a diazepanone-based library of liposidomycins analogs as MraY inhibitors. European Journal of Medicinal Chemistry, 2011, 46, 1582-1592.	5.5	22
26	Bacterial transferase MraY inhibitors: Synthesis and biological evaluation. Bioorganic and Medicinal Chemistry, 2010, 18, 4560-4569.	3.0	20
27	Synthesis of a βâ€Ketophosphonate Bioisostere of UDPâ€ <i>N</i> â€acetylglucosamine. European Journal of Organic Chemistry, 2009, 2009, 3323-3326.	2.4	9
28	Synthetic studies towards diazepanone scaffolds. Tetrahedron: Asymmetry, 2009, 20, 2320-2330.	1.8	20
29	Efficient synthesis of a bacterial translocase MraY inhibitor. Tetrahedron: Asymmetry, 2008, 19, 397-400.	1.8	12
30	Synthesis of 1-C-linked diphosphate analogues of UDP-N-Ac-glucosamine and UDP-N-Ac-muramic acid. Tetrahedron, 2008, 64, 9093-9100.	1.9	23
31	Synthesis of Scaffolds with Glycomimetic Structures. Current Organic Synthesis, 2007, 4, 1-13.	1.3	9
32	Towards New MraY Inhibitors: A Serine Template for Uracil and 5â€Aminoâ€5â€deoxyribosyl Scaffolding. European Journal of Organic Chemistry, 2007, 2007, 5386-5394.	2.4	12
33	Efficient synthesis of polyfunctionalised enantiopure diazepanone scaffolds. Tetrahedron Letters, 2007, 48, 8149-8152.	1.4	26
34	Mono, di and tri-mannopyranosyl phosphates as mannose-1-phosphate prodrugs for potential CDG-la therapy. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 152-155.	2.2	28
35	Synthesis of bis-(2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl)-l-serinyl phosphate, as a prodrug of mannose-1-phosphate. Tetrahedron: Asymmetry, 2007, 18, 2121-2124.	1.8	3
36	Chemical investigations in the synthesis of O-serinyl aminoribosides. Tetrahedron: Asymmetry, 2006, 17, 142-150.	1.8	28

#	Article	IF	CITATIONS
37	Synthesis and glycosidase inhibitory activity of new penta-substituted C8-glycomimetics. Tetrahedron, 2005, 61, 7094-7104.	1.9	30
38	Synthesis and glycosidase inhibitory activity of new hexa-substituted C8-glycomimetics. Beilstein Journal of Organic Chemistry, 2005, 1, 12.	2.2	15
39	Synthesis of polyhydroxylated piperidines and evaluation as glycosidase inhibitors. Bioorganic and Medicinal Chemistry, 2004, 12, 5091-5097.	3.0	22
40	A versatile scaffold for a library of liposidomycins analogues: a crucial and potent glycosylation step. Tetrahedron: Asymmetry, 2004, 15, 189-193.	1.8	15
41	Synthesis of C8-glycomimetics as potential glycosidases inhibitors. Tetrahedron Letters, 2004, 45, 8043-8046.	1.4	18
42	Synthesis and glycosidase inhibitory activity of aminocyclitols with a C6- or a C7-ring. Tetrahedron, 2003, 59, 8705-8720.	1.9	45
43	A Straightforward Route to Indolizidine and Quinolizidine Analogues as New Potential Antidiabetics ChemInform, 2003, 34, no.	0.0	0
44	Synthesis and glycosidase inhibitory activity of enantiopure polyhydroxylated octahydroindoles and decahydroquinolines, analogs to castanospermine. Tetrahedron, 2003, 59, 8721-8730.	1.9	24
45	A Straightforward Route to Indolizidine and Quinolizidine Analogs as new Potential Antidiabetics. Synlett, 2003, 2003, 0333-0336.	1.8	0
46	Efficient route to optically pure polyfunctionalized cyclooctanes. Tetrahedron Letters, 2002, 43, 245-248.	1.4	25
47	New azadisaccharide analogs as potential antidiabetics. Tetrahedron Letters, 2002, 43, 8285-8288.	1.4	10
48	Efficient access to azadisaccharide analogues. Tetrahedron Letters, 2001, 42, 4475-4478.	1.4	19
49	Liposidomycins â~' Synthetic Studies Towards the Ribosyldiazepanone Moiety. European Journal of Organic Chemistry, 2001, 2001, 3089.	2.4	27
50	Synthesis of C 2 -symmetric guanidino-sugars as potent inhibitors of glycosidases. Bioorganic and Medicinal Chemistry, 2000, 8, 307-320.	3.0	42
51	A Concise Route to Carbasugars. Synlett, 1999, 1999, 1322-1324.	1.8	33
52	Access to enantiopure ribosyl-diazepanone core of liposidomycins. Tetrahedron Letters, 1998, 39, 385-388.	1.4	29
53	On the Way to Liposidomycins, New Nucleoside Antibiotics. Access to the Homochiral Diazepanone Core. Journal of Carbohydrate Chemistry, 1997, 16, 129-141.	1.1	25
54	Nucleophilic Opening of Epoxide by Guanidine. A Route to Potential Substrates or Inhibitors of NO Synthases1. Synlett, 1996, 1996, 275-277.	1.8	16

#	Article	IF	CITATIONS
55	Enantiopure hydroxylactones from L-ascorbic and D-isoascorbic acids. Part II. Synthesis of (â^')-(5R,) Tj ETQq1 1 ().784314 1.9	rgBT/Overlo
56	Synthesis of 1,2-Epoxy-3-alkanolsviaMitsunobu Reaction on Unprotected Enantiopure Acyclic 1,2,3-Triols. Synthetic Communications, 1994, 24, 2843-2850.	2.1	4
57	Synthesis of (-)-Muricatacin and (-)-(5R,6S)-6-acetoxy-5-hexadecanolide, the Mosquito oviposition attractant pheromone, from D-isoascorbic acid. Tetrahedron Letters, 1994, 35, 115-118.	1.4	38
58	A General Way, From L-Ascorbic And D-Isoascorbic Acids, To Homochiral α-Hydroxy, α,β-Dihydroxy And α,β-Epoxy-Aldehydes, Useful Building Blocks For The Synthesis Of Linear Oxygenated Fatty Acids Metabolites. Journal of Carbohydrate Chemistry, 1992, 11, 969-998.	1.1	24
59	Lipoxins A4 and B4 Total Synthesis Including Deprotection Studies. Tetrahedron, 1992, 48, 2441-2452.	1.9	13
60	Total synthesis of lipoxins A4 and B4 from d-isoascorbic acid. Tetrahedron Letters, 1991, 32, 1165-1168.	1.4	13
61	Chiral α-hydroxy- and α,β-dihydroxy- aldehydes from D-isoascorbic and L-ascorbic acids. Useful precursors for the synthesis of fatty acid metabolites Tetrahedron Letters, 1990, 31, 1003-1006.	1.4	27
62	Total synthesis of leukotriene B4 [(+)-LTB4] and homo-LTB4 from D-mannitol. Journal of Organic Chemistry, 1989, 54, 2409-2416.	3.2	52
63	Synthesis of Diepoxides and Diaziridines, Precursors of Enantiomerically Pure a-Hydroxy and a-Amino Aldehydes or Acids, from D-Mannitol. Heterocycles, 1987, 25, 541.	0.7	85