Monika Sztretye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5241993/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Astaxanthin Exerts Anabolic Effects via Pleiotropic Modulation of the Excitable Tissue. International Journal of Molecular Sciences, 2022, 23, 917.	4.1	2
2	Assessing the Potential of Nutraceuticals as Geroprotectors on Muscle Performance and Cognition in Aging Mice. Antioxidants, 2021, 10, 1415.	5.1	1
3	The Role of Orai1 in Regulating Sarcoplasmic Calcium Release, Mitochondrial Morphology and Function in Myostatin Deficient Skeletal Muscle. Frontiers in Physiology, 2020, 11, 601090.	2.8	3
4	From Mice to Humans: An Overview of the Potentials and Limitations of Current Transgenic Mouse Models of Major Muscular Dystrophies and Congenital Myopathies. International Journal of Molecular Sciences, 2020, 21, 8935.	4.1	10
5	Improved Tetanic Force and Mitochondrial Calcium Homeostasis by Astaxanthin Treatment in Mouse Skeletal Muscle. Antioxidants, 2020, 9, 98.	5.1	16
6	Calcium Homeostasis Is Modified in Skeletal Muscle Fibers of Small Ankyrin1 Knockout Mice. International Journal of Molecular Sciences, 2019, 20, 3361.	4.1	6
7	Astaxanthin: A Potential Mitochondrial-Targeted Antioxidant Treatment in Diseases and with Aging. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-14.	4.0	114
8	SOCE Is Important for Maintaining Sarcoplasmic Calcium Content and Release in Skeletal Muscle Fibers. Biophysical Journal, 2017, 113, 2496-2507.	0.5	30
9	Restricting calcium currents is required for correct fiber type specification in skeletal muscle. Development (Cambridge), 2016, 143, 1547-59.	2.5	39
10	Calcium Sparklets in Intact Mammalian Skeletal Muscle Fibers Expressing the Embryonic CaV1.1 Splice Variant. Biophysical Journal, 2015, 108, 504a.	0.5	0
11	Hypermuscular mice with mutation in the myostatin gene display altered calcium signalling. Journal of Physiology, 2014, 592, 1353-1365.	2.9	24
12	Expression of the Embryonic Cav1.1 Splice Variant in Adult Mice Alters Excitation-Contraction Coupling but Does not Cause Dystrophic Myotonia. Biophysical Journal, 2014, 106, 126a.	0.5	0
13	The Mstn-Cmpt Dl1Abc- Mice. A Mouse Model to Study Muscle Weakness, Fatigue and Soce. Biophysical Journal, 2014, 106, 128a-129a.	0.5	0
14	Myostatin Deficient Mice Display Altered Calcium Signaling. Biophysical Journal, 2013, 104, 289a.	0.5	0
15	Dynamic measurement of the calcium buffering properties of the sarcoplasmic reticulum in mouse skeletal muscle. Journal of Physiology, 2013, 591, 423-442.	2.9	20
16	Two-Edged Sword: The Ca2+ Biosensor D4cpv-Calsequestrin Restores Functionality to Calsequestrin-Null Muscle. Biophysical Journal, 2012, 102, 362a-363a.	0.5	0
17	Direct Quantification of Calsequestrin-Dependent Buffering in the Calcium Store of Skeletal Muscle. Biophysical Journal, 2012, 102, 362a.	0.5	0
18	Dual Roles of Extracellular Calcium in Excitation-Contraction Coupling of Mouse Skeletal Muscle. Biophysical Journal, 2012, 102, 363a.	0.5	0

Monika Sztretye

#	Article	IF	CITATIONS
19	Measurement of Intra-SR [Ca2+] Reveals Changes in SR Ca2+ Permeability During Intracellular Ca2+ Release in Skeletal Muscle. Biophysical Journal, 2011, 100, 593a.	0.5	0
20	D4cpv-calsequestrin: a sensitive ratiometric biosensor accurately targeted to the calcium store of skeletal muscle. Journal of General Physiology, 2011, 138, 211-229.	1.9	32
21	Measurement of RyR permeability reveals a role of calsequestrin in termination of SR Ca2+ release in skeletal muscle. Journal of General Physiology, 2011, 138, 231-247.	1.9	42
22	Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle. Journal of General Physiology, 2010, 136, 325-338.	1.9	39
23	Effects of High [BAPTA] Inside Mouse Muscle Fibers Reveal a Role of Calcium in the Termination of Voltage-Operated Calcium Release from the SR. Biophysical Journal, 2010, 98, 294a.	0.5	0
24	Ca Depletion and Ablation of Calsequestrin Similarly Increase the Evacuability of the Ca Store of Skeletal Muscle. Biophysical Journal, 2010, 98, 295a.	0.5	1
25	D4cpv-Casq1. A Novel Approach for Targeting Biosensors Yields Detailed Dynamic Imaging of Calcium Concentration Inside the Sarcoplasmic Reticulum of Living Cells. Biophysical Journal, 2010, 98, 294a-295a.	0.5	0
26	Altered sarcoplasmic reticulum calcium transport in the presence of the heavy metal chelator TPEN. Cell Calcium, 2009, 46, 347-355.	2.4	18
27	Indo-1 Derivatives for Local Calcium Sensing. ACS Chemical Biology, 2009, 4, 179-190.	3.4	98
28	Indo-1 Hybrid Biosensors For Calcium Monitoring In Cellular Organelles. Biophysical Journal, 2009, 96, 541a.	0.5	0
29	Effects of K-201 on the calcium pump and calcium release channel of rat skeletal muscle. Pflugers Archiv European Journal of Physiology, 2008, 457, 171-183.	2.8	9
30	Altered expression of triadin 95 causes parallel changes in localized Ca ²⁺ release events and global Ca ²⁺ signals in skeletal muscle cells in culture. Journal of Physiology, 2008, 586, 5803-5818.	2.9	29
31	Charged Surface Area of Maurocalcine Determines Its Interaction with the Skeletal Ryanodine Receptor. Biophysical Journal, 2008, 95, 3497-3509.	0.5	22
32	Effect of TPEN on the calcium release of cultured C2C12 mouse myotubes. Journal of Muscle Research and Cell Motility, 2007, 28, 421-428.	2.0	9
33	Alterations in the calcium homeostasis of skeletal muscle from postmyocardial infarcted rats. Pflugers Archiv European Journal of Physiology, 2007, 455, 541-553.	2.8	8